| 1 | ZHELEZNIAKOV D, ZAYTSEV V, RADYVONENKO O. Online handwritten mathematical expression recognition and applications: a survey[J]. IEEE Access, 2021, 9:38352-38373.  10.1109/access.2021.3063413 | 
																													
																							| 2 | COSTA D S, MELLO C A B, D’AMORIM M. A comparative study on methods and tools for handwritten mathematical expression recognition[C]// Proceedings of the 21st ACM Symposium on Document Engineering. New York: ACM, 2021: No.26.  10.1145/3469096.3474936 | 
																													
																							| 3 | HE F K, TAN J, BI N. Handwritten mathematical expression recognition: a survey[C]// Proceedings of the 2020 International Conference on Pattern Recognition and Artificial Intelligence, LNCS 12068. Cham: Springer, 2020:55-56. | 
																													
																							| 4 | WANG J M, DU J, ZHANG J S, et al. Multi-modal attention network for handwritten mathematical expression recognition[C]// Proceedings of the 2019 International Conference on Document Analysis and Recognition. Piscataway: IEEE, 2019:1181-1186.  10.1109/icdar.2019.00191 | 
																													
																							| 5 | SHAN G C, WANG H Y, LIANG W, et al. Robust encoder-decoder learning framework towards offline handwritten mathematical expression recognition based on multi-scale deep neural network[J]. Science China Information Sciences, 2021, 64(3): No.139101.  10.1007/s11432-018-9824-9 | 
																													
																							| 6 | PRIYA A, MISHRA S, RAJ S, et al. Online and offline character recognition: a survey[C]// Proceedings of the 2016 International Conference on Communication and Signal Processing. Piscataway: IEEE, 2016:967-970.  10.1109/iccsp.2016.7754291 | 
																													
																							| 7 | ZHANG J S, DU J, DAI L R. Track, Attend, and Parse (TAP): an end-to-end framework for online handwritten mathematical expression recognition[J]. IEEE Transactions on Multimedia, 2019, 21(1):221-233.  10.1109/tmm.2018.2844689 | 
																													
																							| 8 | YAN Z Y, ZHANG X D, GAO L C, et al. ConvMath: a convolutional sequence network for mathematical expression recognition[C]// Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021:4566-4572.  10.1109/icpr48806.2021.9412913 | 
																													
																							| 9 | KHAN A, SOHAIL A, ZAHOORA U, et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial Intelligence Review, 2020, 53(8):5455-5516.  10.1007/s10462-020-09825-6 | 
																													
																							| 10 | ZHANG J S, DU J, ZHANG S L, et al. Watch, attend and parse: an end-to-end neural network based approach to handwritten mathematical expression recognition[J]. Pattern Recognition, 2017, 71: 196-206.  10.1016/j.patcog.2017.06.017 | 
																													
																							| 11 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. (2015-04-10) [2022-01-22].. | 
																													
																							| 12 | CHO K, van MERRIËNBOER B, BAHDANAU D, et al. On the properties of neural machine translation: encoder-decoder approaches[C]// Proceedings of the 8th Workshop on Syntax, Semantics and Structure in Statistical Translation. Stroudsburg, PA: ACL, 2014: 103-111.  10.3115/v1/w14-4012 | 
																													
																							| 13 | CHO K, van MERRIËNBOER B, GU̇LÇEHRE Ç, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2014: 1724-1734.  10.3115/v1/d14-1179 | 
																													
																							| 14 | ZHANG J S, DU J, DAI L R. Multi-scale attention with dense encoder for handwritten mathematical expression recognition[C]// Proceedings of the 24th International Conference on Pattern Recognition. Piscataway: IEEE, 2018:2245-2250.  10.1109/icpr.2018.8546031 | 
																													
																							| 15 | HUANG G, LIU Z, L van der MAATEN, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:2261-2269.  10.1109/cvpr.2017.243 | 
																													
																							| 16 | ZHANG J S, DU J, YANG Y X, et al. A tree-structured decoder for image-to-markup generation[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020:11076-11085. | 
																													
																							| 17 | ZHAO W Q, GAO L C, YAN Z Y, et al. Handwritten mathematical expression recognition with bidirectionally trained transformer[C]// Proceedings of the 2021 International Conference on Document Analysis and Recognition, LNCS 12822. Cham: Springer, 2021:570-584. | 
																													
																							| 18 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017:6000-6010. | 
																													
																							| 19 | MOUCHÈRE H, VIARD-GAUDIN C, ZANIBBI R, et al. ICFHR 2014 Competition on recognition of on-line handwritten mathematical expressions (CROHME 2014)[C]// Proceedings of the 14th International Conference on Frontiers in Handwriting Recognition. Piscataway: IEEE, 2014:791-796.  10.1109/icfhr.2014.138 | 
																													
																							| 20 | RAMCHOUN H, JANATI IDRISSI M A, GHANOU Y, et al. Multilayer perceptron: architecture optimization and training[J]. International Journal of Interactive Multimedia and Artificial Intelligence, 2016, 4(1):26-30.  10.9781/ijimai.2016.415 | 
																													
																							| 21 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015:448-456. | 
																													
																							| 22 | SRIVASTAVA N, HINTON G E, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15:1929-1958. | 
																													
																							| 23 | BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL]. (2016-05-19) [2022-01-22]..  10.1017/9781108608480.003 | 
																													
																							| 24 | CHOROWSKI J, BAHDANAU D, CHO K, et al. End-to-end continuous speech recognition using attention-based recurrent NN: first results[EB/OL]. (2014-12-04) [2022-01-22].. | 
																													
																							| 25 | 李康康,张静.基于注意力机制的多层次编码和解码的图像描述模型[J].计算机应用,2021,41(9):2504-2509.  10.11772/j.issn.1001-9081.2020111838 | 
																													
																							|  | LI K K, ZHANG J. Multi-layer encoding and decoding model for image captioning based on attention mechanism[J]. Journal of Computer Applications, 2021, 41(9):2504-2509.  10.11772/j.issn.1001-9081.2020111838 |