Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (6): 1818-1825.DOI: 10.11772/j.issn.1001-9081.2022050688
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Bin LU1,2, Jielin LIU1,2()
Received:
2022-05-13
Revised:
2022-08-05
Accepted:
2022-08-08
Online:
2023-06-08
Published:
2023-06-10
Contact:
Jielin LIU
About author:
LU Bin, born in 1975, Ph. D., professor. His research interests include intelligent computing, computer vision, integrated energy systems.
通讯作者:
柳杰林
作者简介:
鲁斌(1975—),男,宁夏银川人,教授,博士,CCF高级会员,主要研究方向:智能计算、计算机视觉、综合能源系统CLC Number:
Bin LU, Jielin LIU. Semantic segmentation for 3D point clouds based on feature enhancement[J]. Journal of Computer Applications, 2023, 43(6): 1818-1825.
鲁斌, 柳杰林. 基于特征增强的三维点云语义分割[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1818-1825.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022050688
网络 | OA | mAcc | mIoU |
---|---|---|---|
PointNet | 78.6 | 57.8 | 47.7 |
PointNet++ | 81.0 | 67.1 | 52.8 |
RSNet | — | 65.5 | 56.1 |
DGCNN | 82.7 | — | 56.3 |
本文网络 | 84.1 | 71.0 | 58.5 |
Tab. 1 Experimental results of semantic segmentation on S3DIS dataset
网络 | OA | mAcc | mIoU |
---|---|---|---|
PointNet | 78.6 | 57.8 | 47.7 |
PointNet++ | 81.0 | 67.1 | 52.8 |
RSNet | — | 65.5 | 56.1 |
DGCNN | 82.7 | — | 56.3 |
本文网络 | 84.1 | 71.0 | 58.5 |
方法 | 模块 | mIoU | OA | mAcc |
---|---|---|---|---|
PointNet++ | 基准模型 | 56.7 | 84.6 | 71.1 |
+GFSOP | 添加几何特征感知模块 | 58.6 | 86.4 | 72.6 |
+SAM | 添加空间注意力模块 | 56.9 | 84.7 | 71.9 |
+CAM | 添加通道注意力模块 | 57.6 | 85.0 | 72.1 |
+SCAM | 添加双注意力融合模块 | 57.9 | 86.5 | 73.2 |
+GFSOP+SCAM | 添加几何特征感知模块、双注意力融合模块 | 60.3 | 87.0 | 73.9 |
Tab. 2 Results of ablation experiments of different module combinations
方法 | 模块 | mIoU | OA | mAcc |
---|---|---|---|---|
PointNet++ | 基准模型 | 56.7 | 84.6 | 71.1 |
+GFSOP | 添加几何特征感知模块 | 58.6 | 86.4 | 72.6 |
+SAM | 添加空间注意力模块 | 56.9 | 84.7 | 71.9 |
+CAM | 添加通道注意力模块 | 57.6 | 85.0 | 72.1 |
+SCAM | 添加双注意力融合模块 | 57.9 | 86.5 | 73.2 |
+GFSOP+SCAM | 添加几何特征感知模块、双注意力融合模块 | 60.3 | 87.0 | 73.9 |
1 | 王明军,李乐,易芳,等. 模拟真实水体环境下目标激光点云数据的三维重建与分析[J]. 中国激光, 2022, 49(3): No.0309001. 10.3788/CJL202249.0309001 |
WANG M J, LI L, YI F, et al. Three-dimensional reconstruction and analysis of target laser point cloud data in simulated real water environment[J]. Chinese Journal of Lasers, 2022, 49(3): No.0309001. 10.3788/CJL202249.0309001 | |
2 | 缪永伟,刘家宗,孙瑜亮,等. 基于类别-实例分割的室内点云场景修复补全[J]. 计算机学报, 2021, 44(11): 2189-2202. 10.11897/SP.J.1016.2021.02189 |
MIAO Y W, LIU J Z, SUN Y L, et al. Point cloud completion of indoor scenes based on category-instance segmentation [J]. Chinese Journal of Computers, 2021, 44(11): 2189-2202. 10.11897/SP.J.1016.2021.02189 | |
3 | 秦庭威,赵鹏程,秦品乐,等. 基于残差注意力机制的点云配准算法[J]. 计算机应用, 2022, 42(7): 2184-2191. |
QIN T W, ZHAO P C, QIN P L, et al. Point cloud registration algorithm based on residual attention mechanism[J]. Journal of Computer Applications, 2022, 42(7): 2184-2191. | |
4 | MI X X, YANG B S, CHEN C, et al. Automatic road structure detection and vectorization using MLS point clouds[J]. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, XLII-2/W13: 1069-1075. 10.5194/isprs-archives-xlii-2-w13-1069-2019 |
5 | WU Y C, RIVENSON Y, ZHANG Y B, et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery [J]. Optica, 2018, 5(6): 704-710. 10.1364/optica.5.000704 |
6 | CHEN H, LIANG M, LIU W Q, et al. An approach to boundary detection for 3D point clouds based on DBSCAN clustering[J]. Pattern Recognition, 2022, 124: No.108431. 10.1016/j.patcog.2021.108431 |
7 | GHAHREMANI M, WILLIAMS K, CORKE F, et al. Direct and accurate feature extraction from 3D point clouds of plants using RANSAC[J]. Computers and Electronics in Agriculture, 2021, 187: No.106240. 10.1016/j.compag.2021.106240 |
8 | BUI M, CHANG L C, LIU H, et al. Comparative study of 3D point cloud compression methods[C]// Proceedings of the 2021 IEEE International Conference on Big Data. Piscataway: IEEE, 2021: 5859-5861. 10.1109/bigdata52589.2021.9671822 |
9 | LI Y Y, BU R, SUN M C, et al. PointCNN: convolution on Χ-transformed points[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 828-838. |
10 | ANGULO V, RODRIGUEZ J, GAONA E, et al. A supervoxel-based approach for leaves segmentation of potato plants from point clouds[C]// Proceedings of the 2020 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2020: 4902-4905. 10.1109/igarss39084.2020.9324365 |
11 | ZHOU H Y, LIU A A, NIE W Z, et al. Multi-view saliency guided deep neural network for 3-D object retrieval and classification[J]. IEEE Transactions on Multimedia, 2020, 22(6): 1496-1506. 10.1109/tmm.2019.2943740 |
12 | QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 77-85. 10.1109/cvpr.2017.16 |
13 | QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 5105-5114. |
14 | WU W, QI Z, LI F X. PointConv: deep convolutional networks on 3D point clouds[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9621-9630. 10.1109/cvpr.2019.00985 |
15 | LU Q, CHEN C, XIE W J, et al. PointNGCNN: deep convolutional networks on 3D point clouds with neighborhood graph filters [J]. Computers and Graphics, 2020, 86: 42-51. 10.1016/j.cag.2019.11.005 |
16 | LI J X, CHEN B M, LEE G H. SO-Net: self-organizing network for point cloud analysis[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 9397-9406. 10.1109/cvpr.2018.00979 |
17 | LIU T, YANG Z H, HU S J, et al. Neighbor reweighted local centroid for geometric feature identification[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(2): 1545-1558. 10.1109/tvcg.2021.3124911 |
18 | JIANG M Y, WU Y R, ZHAO T Q, et al. PointSIFT: a SIFT-like network module for 3D point cloud semantic segmentation[EB/OL]. (2018-11-24) [2022-05-02].. 10.1145/3503161.3548251 |
19 | FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3141-3149. 10.1109/cvpr.2019.00326 |
20 | ARMENI I, SENER O, ZAMIR A R, et al. 3D semantic parsing of large-scale indoor spaces[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1534-1543. 10.1109/cvpr.2016.170 |
[1] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[4] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[5] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[6] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[7] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[8] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[9] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[10] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
[11] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[12] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[13] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[14] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. |
[15] | Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model [J]. Journal of Computer Applications, 2024, 44(6): 1824-1831. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||