Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (5): 1437-1444.DOI: 10.11772/j.issn.1001-9081.2023050699
Special Issue: 人工智能; 2023年中国计算机学会人工智能会议(CCFAI 2023)
• 2023 CCF Conference on Artificial Intelligence (CCFAI 2023) • Previous Articles Next Articles
Hongtian LI1, Xinhao SHI1, Weiguo PAN1(), Cheng XU1, Bingxin XU1, Jiazheng YUAN1,2
Received:
2023-05-08
Revised:
2023-06-11
Accepted:
2023-06-16
Online:
2023-08-01
Published:
2024-05-10
Contact:
Weiguo PAN
About author:
LI Hongtian, born in 1998, M. S. candidate. His research interests include image processing, computer vision.Supported by:
李鸿天1, 史鑫昊1, 潘卫国1(), 徐成1, 徐冰心1, 袁家政1,2
通讯作者:
潘卫国
作者简介:
李鸿天(1998—),男,广东肇庆人,硕士研究生,主要研究方向:图像处理、计算机视觉基金资助:
CLC Number:
Hongtian LI, Xinhao SHI, Weiguo PAN, Cheng XU, Bingxin XU, Jiazheng YUAN. Few-shot object detection via fusing multi-scale and attention mechanism[J]. Journal of Computer Applications, 2024, 44(5): 1437-1444.
李鸿天, 史鑫昊, 潘卫国, 徐成, 徐冰心, 袁家政. 融合多尺度和注意力机制的小样本目标检测[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1437-1444.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023050699
数据集 划分 | K-shot | AP50 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
基于迁移学习范式的方法 | 基于元学习范式的方法 | MA-FSOD | ||||||||
TFA w/cos[ | MPSR[ | FSCE[ | FSOD-SR[ | FSRW[ | Meta R-CNN[ | QA-FewDet[ | Meta-Faster-RCNN[ | |||
split1 | 1-shot | 39.8 | 41.4 | 44.2 | 50.1 | 14.8 | 19.9 | 42.4 | 43.0 | 46.3 |
2-shot | 36.1 | — | 43.8 | 54.4 | 15.5 | 25.5 | 51.9 | 54.5 | 52.4 | |
3-shot | 44.7 | 51.4 | 51.4 | 56.2 | 26.7 | 35.0 | 55.7 | 60.6 | 61.4 | |
5-shot | 55.7 | 55.6 | 61.9 | 60.0 | 33.9 | 45.7 | 62.6 | 66.1 | 64.8 | |
10-shot | 56.0 | 61.7 | 63.4 | 62.4 | 47.2 | 51.5 | 63.4 | 65.4 | 65.4 | |
split2 | 1-shot | 23.5 | 24.3 | 27.3 | 29.5 | 15.7 | 10.4 | 25.9 | 27.7 | 33.7 |
2-shot | 26.9 | — | 29.5 | 39.9 | 15.3 | 19.4 | 37.8 | 35.5 | 34.4 | |
3-shot | 34.1 | 39.0 | 43.5 | 43.5 | 22.7 | 29.6 | 46.6 | 46.1 | 45.1 | |
5-shot | 35.1 | 39.7 | 44.2 | 44.6 | 30.1 | 34.8 | 48.9 | 47.8 | 47.3 | |
10-shot | 39.1 | 47.2 | 50.2 | 48.1 | 40.5 | 45.4 | 51.1 | 51.2 | 50.7 | |
split3 | 1-shot | 30.8 | 35.4 | 37.2 | 43.6 | 21.3 | 14.3 | 35.2 | 40.6 | 47.1 |
2-shot | 34.8 | — | 41.9 | 46.6 | 25.6 | 18.2 | 42.9 | 46.4 | 54.3 | |
3-shot | 42.8 | 42.1 | 47.5 | 53.4 | 28.4 | 27.5 | 47.8 | 53.4 | 56.1 | |
5-shot | 49.5 | 48.1 | 54.6 | 53.4 | 42.8 | 41.2 | 54.8 | 59.9 | 61.6 | |
10-shot | 49.8 | 49.5 | 58.5 | 59.5 | 45.9 | 48.1 | 53.5 | 58.6 | 61.8 | |
AP50平均值 | 39.9 | 35.7 | 46.6 | 49.7 | 28.4 | 31.1 | 48.0 | 50.5 | 52.2 |
Tab. 1 Comparison of detection performance under various few-shot conditions for PASCAL-VOC dataset
数据集 划分 | K-shot | AP50 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
基于迁移学习范式的方法 | 基于元学习范式的方法 | MA-FSOD | ||||||||
TFA w/cos[ | MPSR[ | FSCE[ | FSOD-SR[ | FSRW[ | Meta R-CNN[ | QA-FewDet[ | Meta-Faster-RCNN[ | |||
split1 | 1-shot | 39.8 | 41.4 | 44.2 | 50.1 | 14.8 | 19.9 | 42.4 | 43.0 | 46.3 |
2-shot | 36.1 | — | 43.8 | 54.4 | 15.5 | 25.5 | 51.9 | 54.5 | 52.4 | |
3-shot | 44.7 | 51.4 | 51.4 | 56.2 | 26.7 | 35.0 | 55.7 | 60.6 | 61.4 | |
5-shot | 55.7 | 55.6 | 61.9 | 60.0 | 33.9 | 45.7 | 62.6 | 66.1 | 64.8 | |
10-shot | 56.0 | 61.7 | 63.4 | 62.4 | 47.2 | 51.5 | 63.4 | 65.4 | 65.4 | |
split2 | 1-shot | 23.5 | 24.3 | 27.3 | 29.5 | 15.7 | 10.4 | 25.9 | 27.7 | 33.7 |
2-shot | 26.9 | — | 29.5 | 39.9 | 15.3 | 19.4 | 37.8 | 35.5 | 34.4 | |
3-shot | 34.1 | 39.0 | 43.5 | 43.5 | 22.7 | 29.6 | 46.6 | 46.1 | 45.1 | |
5-shot | 35.1 | 39.7 | 44.2 | 44.6 | 30.1 | 34.8 | 48.9 | 47.8 | 47.3 | |
10-shot | 39.1 | 47.2 | 50.2 | 48.1 | 40.5 | 45.4 | 51.1 | 51.2 | 50.7 | |
split3 | 1-shot | 30.8 | 35.4 | 37.2 | 43.6 | 21.3 | 14.3 | 35.2 | 40.6 | 47.1 |
2-shot | 34.8 | — | 41.9 | 46.6 | 25.6 | 18.2 | 42.9 | 46.4 | 54.3 | |
3-shot | 42.8 | 42.1 | 47.5 | 53.4 | 28.4 | 27.5 | 47.8 | 53.4 | 56.1 | |
5-shot | 49.5 | 48.1 | 54.6 | 53.4 | 42.8 | 41.2 | 54.8 | 59.9 | 61.6 | |
10-shot | 49.8 | 49.5 | 58.5 | 59.5 | 45.9 | 48.1 | 53.5 | 58.6 | 61.8 | |
AP50平均值 | 39.9 | 35.7 | 46.6 | 49.7 | 28.4 | 31.1 | 48.0 | 50.5 | 52.2 |
小样本 条件 | 评估 指标 | 基于迁移学习范式的方法 | 基于元学习范式的方法 | MA-FSOD | ||||||
---|---|---|---|---|---|---|---|---|---|---|
TFAw/cos[ | MPSR[ | FSCE[ | FSOD-SR[ | FSRW[ | Meta R-CNN[ | QA-FewDet[ | Meta-Faster-RCNN[ | |||
10-shot | AP | 10.0 | 9.8 | 11.9 | 11.6 | 5.6 | 8.7 | 11.6 | 12.7 | 12.8 |
AP50 | 19.1 | 17.9 | — | 21.7 | 12.3 | 19.1 | 23.9 | 25.7 | 25.6 | |
AP75 | 9.3 | 9.7 | 10.5 | 10.4 | 4.6 | 6.6 | 9.8 | 10.8 | 11.2 | |
30-shot | AP | 13.7 | 14.1 | 16.4 | 15.2 | 9.1 | 12.4 | 16.5 | 16.6 | 18.2 |
AP50 | 24.9 | 25.4 | — | 27.5 | 19.0 | 25.3 | 31.9 | 31.8 | 34.6 | |
AP75 | 13.4 | 14.2 | 16.2 | 14.6 | 7.6 | 10.8 | 15.5 | 15.8 | 17.4 |
Tab. 2 Comparison of detection performance under various few-shot conditions for MSCOCO dataset
小样本 条件 | 评估 指标 | 基于迁移学习范式的方法 | 基于元学习范式的方法 | MA-FSOD | ||||||
---|---|---|---|---|---|---|---|---|---|---|
TFAw/cos[ | MPSR[ | FSCE[ | FSOD-SR[ | FSRW[ | Meta R-CNN[ | QA-FewDet[ | Meta-Faster-RCNN[ | |||
10-shot | AP | 10.0 | 9.8 | 11.9 | 11.6 | 5.6 | 8.7 | 11.6 | 12.7 | 12.8 |
AP50 | 19.1 | 17.9 | — | 21.7 | 12.3 | 19.1 | 23.9 | 25.7 | 25.6 | |
AP75 | 9.3 | 9.7 | 10.5 | 10.4 | 4.6 | 6.6 | 9.8 | 10.8 | 11.2 | |
30-shot | AP | 13.7 | 14.1 | 16.4 | 15.2 | 9.1 | 12.4 | 16.5 | 16.6 | 18.2 |
AP50 | 24.9 | 25.4 | — | 27.5 | 19.0 | 25.3 | 31.9 | 31.8 | 34.6 | |
AP75 | 13.4 | 14.2 | 16.2 | 14.6 | 7.6 | 10.8 | 15.5 | 15.8 | 17.4 |
是否采用 ConvNeXt‑tiny | 是否采用本文改进的 多尺度特征融合模块 | 仅在基类推理 的AP50 /% | 不同小样本条件下推理的AP50/% | 参数量/106 | FLOPs | ||||
---|---|---|---|---|---|---|---|---|---|
1-shot | 2-shot | 3-shot | 5-shot | 10-shot | |||||
否 | 否 | 71.4 | 29.9 | 33.2 | 39.3 | 47.1 | 48.4 | 60.08 | 40.38 |
否 | 是 | 72.4 | 35.0 | 36.0 | 40.9 | 48.8 | 50.6 | 63.62 | 42.86 |
是 | 否 | 77.6 | 36.0 | 50.0 | 46.5 | 61.9 | 63.4 | 44.88 | 33.45 |
是 | 是 | 78.5 | 39.3 | 50.8 | 53.3 | 62.8 | 65.2 | 48.42 | 35.92 |
Tab. 3 Ablation experiment results of backbone and multi-scale pyramid networks in VOC07-split1
是否采用 ConvNeXt‑tiny | 是否采用本文改进的 多尺度特征融合模块 | 仅在基类推理 的AP50 /% | 不同小样本条件下推理的AP50/% | 参数量/106 | FLOPs | ||||
---|---|---|---|---|---|---|---|---|---|
1-shot | 2-shot | 3-shot | 5-shot | 10-shot | |||||
否 | 否 | 71.4 | 29.9 | 33.2 | 39.3 | 47.1 | 48.4 | 60.08 | 40.38 |
否 | 是 | 72.4 | 35.0 | 36.0 | 40.9 | 48.8 | 50.6 | 63.62 | 42.86 |
是 | 否 | 77.6 | 36.0 | 50.0 | 46.5 | 61.9 | 63.4 | 44.88 | 33.45 |
是 | 是 | 78.5 | 39.3 | 50.8 | 53.3 | 62.8 | 65.2 | 48.42 | 35.92 |
分类头类型 | 不同小样本条件下推理的AP50 | ||||
---|---|---|---|---|---|
1-shot | 2-shot | 3-shot | 5-shot | 10-shot | |
双头分类器 | 34.0 | 44.9 | 51.0 | 58.5 | 62.0 |
共享FC分类头 | 39.3 | 50.8 | 53.3 | 62.8 | 65.2 |
余弦分类头 | 41.2 | 49.6 | 55.4 | 64.0 | 64.9 |
Tab. 4 Ablation experiment results with different classification heads in VOC07-split1
分类头类型 | 不同小样本条件下推理的AP50 | ||||
---|---|---|---|---|---|
1-shot | 2-shot | 3-shot | 5-shot | 10-shot | |
双头分类器 | 34.0 | 44.9 | 51.0 | 58.5 | 62.0 |
共享FC分类头 | 39.3 | 50.8 | 53.3 | 62.8 | 65.2 |
余弦分类头 | 41.2 | 49.6 | 55.4 | 64.0 | 64.9 |
不同小样本条件下推理的AP50 /% | |||||
---|---|---|---|---|---|
1-shot | 2-shot | 3-shot | 5-shot | 10-shot | |
10 | 36.5 | 47.1 | 54.9 | 55.3 | 55.1 |
20 | 41.2 | 49.6 | 55.4 | 64.0 | 64.9 |
30 | 39.1 | 47.5 | 51.2 | 60.9 | 64.8 |
40 | 39.4 | 47.8 | 53.1 | 61.7 | 63.1 |
Tab. 5 Ablation experiment results with different values of α in VOC07-split1
不同小样本条件下推理的AP50 /% | |||||
---|---|---|---|---|---|
1-shot | 2-shot | 3-shot | 5-shot | 10-shot | |
10 | 36.5 | 47.1 | 54.9 | 55.3 | 55.1 |
20 | 41.2 | 49.6 | 55.4 | 64.0 | 64.9 |
30 | 39.1 | 47.5 | 51.2 | 60.9 | 64.8 |
40 | 39.4 | 47.8 | 53.1 | 61.7 | 63.1 |
实验 序号 | 是否加入CBAM | 是否冻结参数 | 仅在基类推理(AP50) | 不同小样本条件下推理(AP50) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
基类训练 | 新类微调 | CBAM | 金字塔模块 | RPN | RoI提取器 | 1-shot | 2-shot | 3-shot | 5-shot | 10-shot | ||
1 | 是 | 是 | 否 | 否 | 否 | 否 | 79.1 | 36.9 | 47.4 | 55.0 | 63.8 | 64.9 |
2 | 是 | 是 | 是 | 否 | 否 | 否 | 36.3 | 47.7 | 54.7 | 63.9 | 65.5 | |
3 | 是 | 是 | 是 | 是 | 否 | 否 | 39.2 | 48.8 | 57.5 | 64.1 | 65.3 | |
4 | 是 | 是 | 是 | 是 | 是 | 否 | 43.7 | 49.4 | 56.6 | 64.2 | 65.5 | |
5 | 是 | 是 | 是 | 是 | 是 | 是 | 45.2 | 52.3 | 60.4 | 64.4 | 65.8 | |
6 | 是 | 否 | 否 | 是 | 是 | 是 | 52.2 | 48.9 | 59.2 | 64.8 | 64.8 | |
7 | 否 | 否 | 否 | 是 | 是 | 是 | 78.5 | 41.2 | 49.6 | 55.4 | 64.0 | 64.9 |
Tab. 6 Ablation experiment results of CBAM with fine-tuning strategy in VOC07-split1
实验 序号 | 是否加入CBAM | 是否冻结参数 | 仅在基类推理(AP50) | 不同小样本条件下推理(AP50) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
基类训练 | 新类微调 | CBAM | 金字塔模块 | RPN | RoI提取器 | 1-shot | 2-shot | 3-shot | 5-shot | 10-shot | ||
1 | 是 | 是 | 否 | 否 | 否 | 否 | 79.1 | 36.9 | 47.4 | 55.0 | 63.8 | 64.9 |
2 | 是 | 是 | 是 | 否 | 否 | 否 | 36.3 | 47.7 | 54.7 | 63.9 | 65.5 | |
3 | 是 | 是 | 是 | 是 | 否 | 否 | 39.2 | 48.8 | 57.5 | 64.1 | 65.3 | |
4 | 是 | 是 | 是 | 是 | 是 | 否 | 43.7 | 49.4 | 56.6 | 64.2 | 65.5 | |
5 | 是 | 是 | 是 | 是 | 是 | 是 | 45.2 | 52.3 | 60.4 | 64.4 | 65.8 | |
6 | 是 | 否 | 否 | 是 | 是 | 是 | 52.2 | 48.9 | 59.2 | 64.8 | 64.8 | |
7 | 否 | 否 | 否 | 是 | 是 | 是 | 78.5 | 41.2 | 49.6 | 55.4 | 64.0 | 64.9 |
1 | 范馨月,鲍泓,潘卫国.基于类别不平衡数据集的图像实例分割方法[J].计算机工程,2022,48(12):224-231. 10.19678/j.issn.1000-3428.0063741 |
FAN X Y, BAO H, PAN W G. Image instance segmentation method based on class-imbalanced dataset[J]. Computer Engineering,2022,48(12):224-231. 10.19678/j.issn.1000-3428.0063741 | |
2 | 林润超,黄荣,董爱华.基于注意力机制和元特征二次重加权的小样本目标检测[J].计算机应用,2022,42(10):3025-3032. 10.11772/j.issn.1001-9081.2021091571 |
LIN R C, HUANG R, DONG A H. Few-shot object detection based on attention mechanism and secondary reweighting of meta-features[J].Journal of Computer Applications, 2022,42(10): 3025-3032. 10.11772/j.issn.1001-9081.2021091571 | |
3 | 范馨月,刘腾,鲍泓,等.基于记忆库和后处理方法解决长尾实例分割问题[J].计算机应用研究,2023,40(6):1876-1881. |
FAN X Y, LIU T, BAO H, et al. Method for long-tailed instance segmentation based on memory bank and confidence calibration[J]. Application Research of Computers, 2023, 40(6): 1876-1881. | |
4 | 李丽芬,范新烨.元学习与多尺度特征融合的小样本目标检测[J/OL].小型微型计算机系统, 2023 [2023-06-18]. . |
LI L F, FAN X Y. Few-shot object detection with meta-learning and multi-scale feature fusion [J/OL]. Journal of Chinese Computer Systems, 2023 [2023-06-18]. . | |
5 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. 10.1109/tpami.2016.2577031 |
6 | WANG X, HUANG T E, DARRELL T, et al. Frustratingly simple few-shot object detection [EB/OL]. [2023-06-18]. . 10.48550/arXiv.2003.06957 |
7 | 潘兴甲,张旭龙,董未名,等.小样本目标检测的研究现状[J].南京信息工程大学学报(自然科学版),2019,11(6):698-705. |
PAN X J, ZHANG X L, DONG W M, et al. A survey of few-shot object detection[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2019,11(6):698-705. | |
8 | LIANG T, BAO H, PAN W, et al. DetectFormer: category-assisted transformer for traffic scene object detection[J]. Sensors, 2022, 22(13): 4833. 10.3390/s22134833 |
9 | WU J, LIU S, HUANG D, et al. Multi-scale positive sample refinement for few-shot object detection[C]// Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020:456-472. 10.1007/978-3-030-58517-4_27 |
10 | XU H, WANG X, SHAO F, et al. Few-shot object detection via sample processing[J]. IEEE Access, 2021, 9: 29207-29221. 10.1109/access.2021.3059446 |
11 | SUN B, LI B, CAI S, et al. FSCE: few-shot object detection via contrastive proposal encoding[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 7352-7362. 10.1109/cvpr46437.2021.00727 |
12 | KIM G, JUNG H-G, LEE S-W. Spatial reasoning for few-shot object detection[J]. Pattern Recognition, 2021, 120: 108118. 10.1016/j.patcog.2021.108118 |
13 | QIAO L, ZHAO Y, LI Z, et al. DeFRCN: decoupled Faster R‑CNN for few-shot object detection [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 8681-8690. 10.1109/iccv48922.2021.00856 |
14 | KAUL P, XIE W, Label ZISSERMAN A., verify, correct: a simple few shot object detection method[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 14237-14247. 10.1109/cvpr52688.2022.01384 |
15 | KANG B, LIU Z, WANG X, et al. Few-shot object detection via feature reweighting[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8420-8429. 10.1109/iccv.2019.00851 |
16 | YAN X, CHEN Z, XU A, et al. Meta R-CNN: towards general solver for instance-level low-shot learning[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9577-9586. 10.1109/iccv.2019.00967 |
17 | HAN G, HE Y, HUANG S, et al. Query adaptive few-shot object detection with heterogeneous graph convolutional networks[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3263-3272. 10.1109/iccv48922.2021.00325 |
18 | HAN G, MA J, HUANG S, et al. Few-shot object detection with fully cross-transformer[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5321-5330. 10.1109/cvpr52688.2022.00525 |
19 | HAN G, HUANG S, MA J, et al. Meta Faster R-CNN: towards accurate few-shot object detection with attentive feature alignment[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2022: 780-789. 10.1609/aaai.v36i1.19959 |
20 | 刘春磊,陈天恩,王聪,等.小样本目标检测研究综述[J].计算机科学与探索,2023,17(1):53-73. |
LIU C L, CHEN T E, WANG C, et al. Survey of few-shot object detection[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 53-73. | |
21 | LIU Z, MAO H, WU C-Y, et al. A ConvNet for the 2020s[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 11976-11986. 10.1109/cvpr52688.2022.01167 |
22 | WOO S, PARK J, LEE J-Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19. 10.1007/978-3-030-01234-2_1 |
23 | LIN T-Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2117-2125. 10.1109/cvpr.2017.106 |
24 | LI W, HUANG R, LI J, et al. A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: theories, applications and challenges[J]. Mechanical Systems and Signal Processing, 2022, 167: 108487. 10.1016/j.ymssp.2021.108487 |
25 | SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 761-769. 10.1109/cvpr.2016.89 |
26 | PANG J, CHEN K, SHI J, et al. Libra R-CNN: towards balanced learning for object detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 821-830. 10.1109/cvpr.2019.00091 |
27 | CAO Y, CHEN K, LOY C C, et al. Prime sample attention in object detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11583-11591. 10.1109/cvpr42600.2020.01160 |
28 | WU Y, CHEN Y, YUAN L, et al. Rethinking classification and localization for object detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10186-10195. 10.1109/cvpr42600.2020.01020 |
29 | EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2009, 88: 303-308. 10.1007/s11263-009-0275-4 |
30 | EVERINGHAM M, ESLAMI S M A, VAN GOOL L, et al. The PASCAL visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111: 98-136. 10.1007/s11263-014-0733-5 |
31 | LIN T-Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 740-755. 10.1007/978-3-319-10602-1_48 |
32 | GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]// Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. New York: JMLR, 2010: 249-256. |
33 | LIANG T, BAO H, PAN W, et al. Traffic sign detection via improved sparse R-CNN for autonomous vehicles[J]. Journal of Advanced Transportation, 2022, 2022: 3825532. 10.1155/2022/3825532 |
34 | CHATTOPADHAY A, SARKAR A, HOWLADER P, et al. Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks[C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 839-847. 10.1109/wacv.2018.00097 |
[1] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[4] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[5] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[6] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[7] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[8] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[9] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[10] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[11] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. |
[12] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[13] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[14] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
[15] | Feiyu ZHAI, Handa MA. Hybrid classical-quantum classification model based on DenseNet [J]. Journal of Computer Applications, 2024, 44(6): 1905-1910. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||