Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (8): 2588-2594.DOI: 10.11772/j.issn.1001-9081.2023081198
• Multimedia computing and computer simulation • Previous Articles Next Articles
Zhonghua LI, Yunqi BAI, Xuejin WANG(), Leilei HUANG, Chujun LIN, Shiyu LIAO
Received:
2023-09-06
Revised:
2023-10-18
Accepted:
2023-11-03
Online:
2024-08-22
Published:
2024-08-10
Contact:
Xuejin WANG
About author:
LI Zhonghua, born in 1976, Ph. D., associate professor. His research interests include artificial intelligence, image processing.Supported by:
李钟华, 白云起, 王雪津(), 黄雷雷, 林初俊, 廖诗宇
通讯作者:
王雪津
作者简介:
李钟华(1976—),男,福建南平人,副教授,博士,主要研究方向:人工智能、图像处理基金资助:
CLC Number:
Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement[J]. Journal of Computer Applications, 2024, 44(8): 2588-2594.
李钟华, 白云起, 王雪津, 黄雷雷, 林初俊, 廖诗宇. 基于图像增强的低照度人脸检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2588-2594.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023081198
组号 | SIMAM | WIOU | SCI | SPPFCSPC | 参数量/106 | GFLOPs | AP@0.5/% | AP@0.5:0.95/% |
---|---|---|---|---|---|---|---|---|
1 | × | × | × | × | 37.2 | 105.1 | 70.2 | 32.3 |
2 | √ | × | × | × | 37.2 | 105.1 | 70.9 | 32.5 |
3 | √ | √ | × | × | 37.2 | 105.1 | 71.8 | 33.0 |
4 | √ | √ | √ | × | 37.2 | 105.1 | 72.3 | 33.5 |
5 | √ | √ | √ | √ | 37.2 | 105.1 | 72.6 | 33.7 |
Tab. 1 Results of ablation experiments
组号 | SIMAM | WIOU | SCI | SPPFCSPC | 参数量/106 | GFLOPs | AP@0.5/% | AP@0.5:0.95/% |
---|---|---|---|---|---|---|---|---|
1 | × | × | × | × | 37.2 | 105.1 | 70.2 | 32.3 |
2 | √ | × | × | × | 37.2 | 105.1 | 70.9 | 32.5 |
3 | √ | √ | × | × | 37.2 | 105.1 | 71.8 | 33.0 |
4 | √ | √ | √ | × | 37.2 | 105.1 | 72.3 | 33.5 |
5 | √ | √ | √ | √ | 37.2 | 105.1 | 72.6 | 33.7 |
方法 | AP@0.5/% | AP@0.95/% |
---|---|---|
CIoU(原方法) | 71.9 | 33.0 |
WIOUv1 | 71.7 | 33.5 |
WIOUv2 | 72.4 | 33.6 |
WIOUv3 | 72.6 | 33.7 |
Tab. 2 Performance comparison of bounding box loss functions
方法 | AP@0.5/% | AP@0.95/% |
---|---|---|
CIoU(原方法) | 71.9 | 33.0 |
WIOUv1 | 71.7 | 33.5 |
WIOUv2 | 72.4 | 33.6 |
WIOUv3 | 72.6 | 33.7 |
增强方法 | FPS | AP@0.5/% | AP@0.5:0.95/% |
---|---|---|---|
未使用增强方法 | 98 | 71.8 | 33.1 |
LIME | 98 | 68.9 | 31.0 |
MBLLEN | 92 | 68.7 | 31.4 |
NIGHT-ENHANCEMENT | 93 | 52.7 | 22.2 |
DRBN | 84 | 68.1 | 30.8 |
EnlightenGAN | 87 | 70.1 | 32.0 |
RUAS | 97 | 71.5 | 32.6 |
Zero-DCE | 98 | 72.2 | 33.3 |
SCI(本文方法) | 86 | 72.6 | 33.7 |
Tab. 3 Performance comparison of different enhancement methods
增强方法 | FPS | AP@0.5/% | AP@0.5:0.95/% |
---|---|---|---|
未使用增强方法 | 98 | 71.8 | 33.1 |
LIME | 98 | 68.9 | 31.0 |
MBLLEN | 92 | 68.7 | 31.4 |
NIGHT-ENHANCEMENT | 93 | 52.7 | 22.2 |
DRBN | 84 | 68.1 | 30.8 |
EnlightenGAN | 87 | 70.1 | 32.0 |
RUAS | 97 | 71.5 | 32.6 |
Zero-DCE | 98 | 72.2 | 33.3 |
SCI(本文方法) | 86 | 72.6 | 33.7 |
模型 | FPS | AP@0.5/% | AP@0.5:0.95/% |
---|---|---|---|
SSD300 | 40 | 11.6 | 6.3 |
Faster R-CNN | 38 | 41.3 | 18.6 |
ObjectBox [ | 70 | 53.6 | 21.7 |
YOLO-Facev2l[ | 80 | 50.2 | 22.5 |
YOLOv5l | 94 | 65.4 | 29.1 |
YOLOv7 | 98 | 70.2 | 32.3 |
YOLOv8l [ | 86 | 56.1 | 25.1 |
本文方法 | 86 | 72.6 | 33.7 |
Tab. 4 Performance comparison of different detection models
模型 | FPS | AP@0.5/% | AP@0.5:0.95/% |
---|---|---|---|
SSD300 | 40 | 11.6 | 6.3 |
Faster R-CNN | 38 | 41.3 | 18.6 |
ObjectBox [ | 70 | 53.6 | 21.7 |
YOLO-Facev2l[ | 80 | 50.2 | 22.5 |
YOLOv5l | 94 | 65.4 | 29.1 |
YOLOv7 | 98 | 70.2 | 32.3 |
YOLOv8l [ | 86 | 56.1 | 25.1 |
本文方法 | 86 | 72.6 | 33.7 |
模型 | FPS | AP@0.5/% | AP@0.5:0.95/% |
---|---|---|---|
SSD300 | 35 | 12.8 | 8.7 |
Faster R-CNN | 33 | 42.7 | 19.8 |
ObjectBox | 60 | 56.2 | 22.7 |
YOLO-Facev2l | 71 | 52.4 | 23.4 |
YOLOv5l | 92 | 67.5 | 30.1 |
YOLOv7 | 94 | 71.4 | 32.8 |
YOLOv8 | 72 | 59.3 | 26.5 |
本文方法 | 86 | 72.6 | 33.7 |
Tab. 5 Performance comparison of different models after SCI preprocessing
模型 | FPS | AP@0.5/% | AP@0.5:0.95/% |
---|---|---|---|
SSD300 | 35 | 12.8 | 8.7 |
Faster R-CNN | 33 | 42.7 | 19.8 |
ObjectBox | 60 | 56.2 | 22.7 |
YOLO-Facev2l | 71 | 52.4 | 23.4 |
YOLOv5l | 92 | 67.5 | 30.1 |
YOLOv7 | 94 | 71.4 | 32.8 |
YOLOv8 | 72 | 59.3 | 26.5 |
本文方法 | 86 | 72.6 | 33.7 |
数据集 | 模型 | AP@0.5 | AP@0.5:0.95 |
---|---|---|---|
UFDD | SSD300 | 15.4 | 8.5 |
Faster R-CNN | 30.7 | 9.4 | |
ObjectBox | 20.2 | 5.1 | |
YOLO-Facev2l | 42.7 | 11.2 | |
YOLOv5l | 37.4 | 10.0 | |
YOLOv7 | 42.6 | 11.2 | |
YOLOv8l | 28.2 | 8.0 | |
本文方法 | 51.0 | 13.9 | |
ExDark | SSD300 | 43.3 | 13.8 |
Faster R-CNN | 47.9 | 14.7 | |
ObjectBox | 28.8 | 8.1 | |
YOLO-Facev2l | 43.3 | 13.8 | |
YOLOv5l | 55.2 | 16.3 | |
YOLOv7 | 54.3 | 16.2 | |
YOLOv8l | 43.5 | 14.1 | |
本文方法 | 68.9 | 21.2 |
Tab. 6 Performance comparison of different models on UFDD and ExDark datasets
数据集 | 模型 | AP@0.5 | AP@0.5:0.95 |
---|---|---|---|
UFDD | SSD300 | 15.4 | 8.5 |
Faster R-CNN | 30.7 | 9.4 | |
ObjectBox | 20.2 | 5.1 | |
YOLO-Facev2l | 42.7 | 11.2 | |
YOLOv5l | 37.4 | 10.0 | |
YOLOv7 | 42.6 | 11.2 | |
YOLOv8l | 28.2 | 8.0 | |
本文方法 | 51.0 | 13.9 | |
ExDark | SSD300 | 43.3 | 13.8 |
Faster R-CNN | 47.9 | 14.7 | |
ObjectBox | 28.8 | 8.1 | |
YOLO-Facev2l | 43.3 | 13.8 | |
YOLOv5l | 55.2 | 16.3 | |
YOLOv7 | 54.3 | 16.2 | |
YOLOv8l | 43.5 | 14.1 | |
本文方法 | 68.9 | 21.2 |
1 | MINAEE S, LUO P, LIN Z, et al. Going deeper into face detection: a survey[EB/OL]. (2021-04-13) [2023-04-20].. |
2 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. |
3 | GIRSHICK R. Fast R-CNN[C]// Proceedings of 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE 2015: 1440-1448. |
4 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 91-99. |
5 | LIU W, ANHUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37. |
6 | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2023-04-20].. |
7 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2023-04-20].. |
8 | GE Z, LIU S, WANG F, et al. YOLOx: exceeding YOLO series in 2021[EB/OL]. (2021-08-06) [2023-04-20].. |
9 | YANG S, LUO P, LOY C C, et al. WIDER FACE: a face detection benchmark[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 5525-5533. |
10 | JAIN V, LEARNED-MILLER E. FDDB: a benchmark for face detection in unconstrained settings[EB/OL]. [2023-04-20].. |
11 | WANG W, YANG W, LIU J. HLA-face: joint high-low adaptation for low light face detection[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 16190-16199. |
12 | YANG W, YUAN Y, REN W, et al. Advancing image understanding in poor visibility environments: a collective benchmark study[J]. IEEE Transactions on Image Processing, 2020, 29: 5737-5752. |
13 | 江泽涛,覃露露,秦嘉奇,等. 一种基于MDARNet的低照度图像增强方法[J]. 软件学报, 2021, 32(12): 3977-3991. |
JIANG Z T, QIN L L, QIN J Q, et al. Low-light image enhancement method based on MDARNet[J]. Journal of Software, 2021, 32(12):3977-3991. | |
14 | 江泽涛,翟丰硕,钱艺,等. 结合特征增强和多尺度感受野的低照度目标检测[J]. 计算机研究与发展, 2023, 60(4): 903-915. |
JIANG Z T, ZHAI F S, QIAN Y, et al. Low illumination object detection combined with feature enhancement and multi-scale receptive field[J]. Journal of Computer Research and Development, 2023, 60(4): 903-915. | |
15 | 黄淑英,胡威,杨勇,等. 基于渐进式双网络模型的低曝光图像增强方法[J]. 计算机学报, 2021, 44(2): 384-394. |
HUANG S Y, HU W, YANG Y, et al. A low-exposure image enhancement based on progressive dual network model[J]. Chinese Journal of Computers, 2021, 44(2): 384-394. | |
16 | WANG W, WANG X, YANG W, et al. Unsupervised face detection in the dark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 1250-1266. |
17 | MA L, MA T, LIU R, et al. Toward fast, flexible, and robust low-light image enhancement[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5627-5636. |
18 | YU J, HAO X, HE P. Single-stage face detection under extremely low-light conditions[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 3516-3525. |
19 | LIANG J, WANG J, QUAN Y, et al. Recurrent exposure generation for low-light face detection[J]. IEEE Transactions on Multimedia, 2022, 24: 1609-1621. |
20 | 李可夫,钟汇才,高兴宇,等. 显著性引导的低光照人脸检测[J]. 北京航空航天大学学报, 2021, 47(3): 572-584. |
LI K F, ZHONG H C, GAO X Y, et al. Saliency guided low-light face detection[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(3): 572-584. | |
21 | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475. |
22 | Ultralytics. YOLOv5[EB/OL]. [2023-04-20].. |
23 | GUO X, LI Y, LING H. LIME: low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 982-993. |
24 | JIN Y, YANG W, TAN R T. Unsupervised night image enhancement: when layer decomposition meets light-effects suppression[C]// Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 404-421. |
25 | JIANG Y, GONG X, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349. |
26 | YANG W, WANG S, FANG Y, et al. From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3060-3069. |
27 | LIU R, MA L, ZHANG J, et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10556-10565. |
28 | LV F, LU F, WU J, et al. MBLLEN: low-light image/video enhancement using CNNs[C]// Proceedings of the 2018 British Machine Vision Conference. Durham: BMVA Press, 2018, 1-13. |
29 | GUO C, LI C, GUO J, et al. Zero-reference deep curve estimation for low-light image enhancement[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1777-1786. |
30 | YANG L, ZHANG R Y, LI L, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 11863-11874. |
31 | ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 12993-13000. |
32 | TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL]. (2023-04-08) [2023-04-20].. |
33 | NADA H, SINDAGI V A, ZHANG H, et al. Pushing the limits of unconstrained face detection: a challenge dataset and baseline results[C]// Proceedings of the IEEE 9th International Conference on Biometrics Theory, Applications and Systems. Piscataway: IEEE, 2018: 1-10. |
34 | LOH Y P, CHAN C S. Getting to know low-light images with the Exclusively Dark dataset[J]. Computer Vision and Image Understanding, 2019, 178: 30-42. |
35 | ZAND M, ETEMAD A, GREENSPAN M. ObjectBox: from centers to boxes for anchor-free object detection[C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13670. Cham: Springer, 2022: 390-406. |
36 | YU Z, HUANG H, CHEN W, et al. YOLO-Facev2: a scale and occlusion aware face detector[EB/OL]. (2022-08-04) [2023-04-20].. |
37 | Ultralytics. Ultralytics YOLOv8[EB/OL]. [2023-04-20].. |
[1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[2] | Yan RONG, Jiawen LIU, Xinlei LI. Adaptive hybrid network for affective computing in student classroom [J]. Journal of Computer Applications, 2024, 44(9): 2919-2930. |
[3] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[4] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[5] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[6] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[7] | Kaili DENG, Weibo WEI, Zhenkuan PAN. Industrial defect detection method with improved masked autoencoder [J]. Journal of Computer Applications, 2024, 44(8): 2595-2603. |
[8] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[9] | Zhe KONG, Han LI, Shaowei GAN, Mingru KONG, Bingtao HE, Ziyu GUO, Ducheng JIN, Zhaowen QIU. Structure segmentation model for 3D kidney images based on asymmetric multi-decoder and attention module [J]. Journal of Computer Applications, 2024, 44(7): 2216-2224. |
[10] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[11] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[12] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
[13] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[14] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[15] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||