Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (2): 670-676.DOI: 10.11772/j.issn.1001-9081.2024030262

• Frontier and comprehensive applications • Previous Articles    

Enterprise ESG indicator prediction model based on richness coordination technology

Yan LI1, Guanhua YE2(), Yawen LI3, Meiyu LIANG2   

  1. 1.School of Management and Economics,University of Electronic Science and Technology of China,Chengdu Sichuan 611731,China
    2.School of Computer Science (National Pilot School of Software Engineering School),Beijing University of Posts and Telecommunications,Beijing 100876,China
    3.School of Economics and Management,Beijing University of Posts and Telecommunications,Beijing 100876,China
  • Received:2024-03-15 Revised:2024-04-27 Accepted:2024-04-28 Online:2024-05-29 Published:2025-02-10
  • Contact: Guanhua YE
  • About author:LI Yan, born in 2002. His research interests include financial technology, deep learning, data mining.
    LI Yawen, born in 1991, Ph. D., associate professor. Her research interest include artificial intelligence, collaborative innovation, development of science parks, scientific production of enterprises.
    LIANG Meiyu, born in 1985, Ph. D., professor. Her research interests include artificial intelligence, computer vision, cross media big data mining.
  • Supported by:
    National Natural Science Foundation of China(62172056);Young Elite Scientists Sponsorship Program by Chinese Association for Artificial Intelligence(2022QNRC001)

基于丰度协调技术的企业ESG指标预测模型

李严1, 叶冠华2(), 李雅文3, 梁美玉2   

  1. 1.电子科技大学 经济与管理学院,成都 611731
    2.北京邮电大学 计算机学院(国家示范性软件学院),北京 100876
    3.北京邮电大学 经济管理学院,北京 100876
  • 通讯作者: 叶冠华
  • 作者简介:李严(2002—),男,四川成都人,主要研究方向:金融科技、深度学习、数据挖掘
    李雅文(1991—),女,北京人,副教授,博士,主要研究方向:人工智能、协同创新、科技园区发展、企业科研生产
    梁美玉(1985—),女,山东泰安人,教授,博士,主要研究方向:人工智能、计算机视觉、跨媒体大数据挖掘。
  • 基金资助:
    国家自然科学基金资助项目(62172056);中国人工智能学会青年人才托举工程(2022QNRC001)

Abstract:

Environmental, Social, and Governance (ESG) indicator is a critical indicator for assessing the sustainability of enterprises. The existing ESG assessment systems face challenges such as narrow coverage, strong subjectivity, and poor timeliness. Thus, there is an urgent need for research on prediction models that can forecast ESG indicator accurately using enterprise data. Addressing the issue of inconsistent information richness among ESG-related features in enterprise data, a prediction model RCT (Richness Coordination Transformer) was proposed for enterprise ESG indicator prediction based on richness coordination technology. In this model, an auto-encoder was used in the upstream richness coordination module to coordinate features with heterogeneous information richness, thereby enhancing the ESG indicator prediction performance of the downstream module. Experimental results on real datasets demonstrate that on various prediction indicators, RCT model outperforms multiple models including Temporal Convolutional Network (TCN), Long Short-Term Memory (LSTM) network, Self-Attention Model (Transformer), eXtreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM). The above verifies that the effectiveness and superiority of RCT model in ESG indicator prediction.

Key words: data mining, deep learning, time series forecasting, auto-encoder, attention mechanism, data heterogeneity, Environmental, Social, and Governance (ESG), richness coordination technology

摘要:

环境、社会及治理(ESG)指标是评估企业可持续发展的重要指标。现有的ESG评估体系存在覆盖范围狭窄、主观性强和时效性差等问题,因此,迫切需要研究能利用企业数据准确预测ESG指标的预测模型。针对企业数据中ESG关联特征存在信息丰度不一致的问题,提出一种基于丰度协调技术的企业ESG指标预测模型RCT (Richness Coordination Transformer),其中上游丰度协调模块通过自编码器协调异质丰度特征,从而提高下游模块的ESG指标预测性能。在真实数据集上的实验结果表明,与模型时间卷积网络(TCN)、长短期记忆(LSTM)网络、自注意力模型(Transformer)、极限梯度提升(XGBoost)和轻量级梯度提升机(LightGBM)相比,RCT模型在各项预测指标上均表现最优,验证了RCT模型在预测ESG指标上的有效性和优越性。

关键词: 数据挖掘, 深度学习, 时序预测, 自编码器, 注意力机制, 数据异质, 环境、社会及治理, 丰度协调技术

CLC Number: