Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (6): 1784-1792.DOI: 10.11772/j.issn.1001-9081.2024060902
• CCF BigData 2024 • Previous Articles
Chaoying JIANG1,2, Qian LI1,2, Ning LIU1,2(), Lei LIU3, Lizhen CUI1,2
Received:
2024-07-01
Revised:
2024-07-16
Accepted:
2024-07-22
Online:
2024-08-19
Published:
2025-06-10
Contact:
Ning LIU
About author:
JIANG Chaoying, born in 2001, M. S. candidate. Her research interests include data mining.Supported by:
姜超英1,2, 李倩1,2, 刘宁1,2(), 刘磊3, 崔立真1,2
通讯作者:
刘宁
作者简介:
姜超英(2001—),女,山东威海人,硕士研究生,CCF会员,主要研究方向:数据挖掘基金资助:
CLC Number:
Chaoying JIANG, Qian LI, Ning LIU, Lei LIU, Lizhen CUI. Readmission prediction model based on graph contrastive learning[J]. Journal of Computer Applications, 2025, 45(6): 1784-1792.
姜超英, 李倩, 刘宁, 刘磊, 崔立真. 基于图对比学习的再入院预测模型[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1784-1792.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024060902
符号 | 定义 |
---|---|
特定患者就诊序列 | |
患者第 | |
患者是否会再次入院 | |
预测患者是否会再次入院 | |
节点特征矩阵 | |
邻接矩阵 | |
疾病编码图表示(c表示患者,g表示图的嵌入) | |
多热向量(点采样中决定节点是否删除) | |
多热向量(边采样中决定边是否删除), i、 j表示疾病 | |
节点嵌入表示(v表示节点的嵌入) | |
节点增强视图 | |
边增强视图(e表示边的嵌入) | |
节点增强视图图嵌入 | |
边增强视图图嵌入 | |
患者此次入院表征向量 |
Tab. 1 Important symbols and their definitions
符号 | 定义 |
---|---|
特定患者就诊序列 | |
患者第 | |
患者是否会再次入院 | |
预测患者是否会再次入院 | |
节点特征矩阵 | |
邻接矩阵 | |
疾病编码图表示(c表示患者,g表示图的嵌入) | |
多热向量(点采样中决定节点是否删除) | |
多热向量(边采样中决定边是否删除), i、 j表示疾病 | |
节点嵌入表示(v表示节点的嵌入) | |
节点增强视图 | |
边增强视图(e表示边的嵌入) | |
节点增强视图图嵌入 | |
边增强视图图嵌入 | |
患者此次入院表征向量 |
实验组 | 图数 | 平均节点数 | 平均边数 |
---|---|---|---|
呼吸系统疾病 | 17 679 | 14.42 | 93.27 |
循环系统疾病 | 26 559 | 13.48 | 79.33 |
Tab. 2 Data information of disease code maps
实验组 | 图数 | 平均节点数 | 平均边数 |
---|---|---|---|
呼吸系统疾病 | 17 679 | 14.42 | 93.27 |
循环系统疾病 | 26 559 | 13.48 | 79.33 |
模型 | 针对呼吸系统疾病 | 针对循环系统疾病 | ||||
---|---|---|---|---|---|---|
AUC | ACC | F1 macro | AUC | ACC | F1 macro | |
LR | 0.723 2 | 0.695 2 | 0.687 8 | 0.719 0 | 0.589 9 | |
KNN | 0.611 7 | 0.512 4 | 0.511 3 | 0.609 8 | 0.608 5 | 0.568 1 |
DT | 0.606 8 | 0.646 4 | 0.608 1 | 0.573 4 | 0.660 8 | 0.574 5 |
RF | 0.684 5 | 0.645 0 | 0.392 1 | 0.670 2 | 0.717 3 | 0.417 7 |
DNN | 0.533 5 | 0.645 0 | 0.392 1 | 0.501 5 | 0.717 3 | 0.417 7 |
RETAIN | 0.720 3 | 0.686 0 | 0.636 7 | 0.687 6 | ||
StageNet | 0.731 1 | 0.635 2 | 0.717 5 | 0.615 0 | ||
HealthGraph | 0.712 8 | 0.655 8 | 0.705 7 | 0.735 5 | 0.626 5 |
Tab. 3 Comparative experimental results of different models on readmission prediction task
模型 | 针对呼吸系统疾病 | 针对循环系统疾病 | ||||
---|---|---|---|---|---|---|
AUC | ACC | F1 macro | AUC | ACC | F1 macro | |
LR | 0.723 2 | 0.695 2 | 0.687 8 | 0.719 0 | 0.589 9 | |
KNN | 0.611 7 | 0.512 4 | 0.511 3 | 0.609 8 | 0.608 5 | 0.568 1 |
DT | 0.606 8 | 0.646 4 | 0.608 1 | 0.573 4 | 0.660 8 | 0.574 5 |
RF | 0.684 5 | 0.645 0 | 0.392 1 | 0.670 2 | 0.717 3 | 0.417 7 |
DNN | 0.533 5 | 0.645 0 | 0.392 1 | 0.501 5 | 0.717 3 | 0.417 7 |
RETAIN | 0.720 3 | 0.686 0 | 0.636 7 | 0.687 6 | ||
StageNet | 0.731 1 | 0.635 2 | 0.717 5 | 0.615 0 | ||
HealthGraph | 0.712 8 | 0.655 8 | 0.705 7 | 0.735 5 | 0.626 5 |
实验类型 | 模型组成部分 | 针对呼吸系统疾病的再入院预测 | 针对循环系统疾病的再入院预测 | ||||
---|---|---|---|---|---|---|---|
AUC | ACC | F1 macro | AUC | ACC | F1 macro | ||
图采样模块 | 仅节点采样 | 0.716 7 | 0.701 9 | 0.637 0 | 0.698 3 | 0.731 8 | |
仅边采样 | 0.619 4 | ||||||
组合采样 | 0.729 1 | 0.712 8 | 0.655 8 | 0.705 7 | 0.735 5 | 0.626 5 | |
损失函数 | 无对比损失 | ||||||
完整损失 | 0.729 1 | 0.712 8 | 0.655 8 | 0.705 7 | 0.735 5 | 0.626 5 |
Tab.4 Ablation experiment results of different model components on readmission prediction task
实验类型 | 模型组成部分 | 针对呼吸系统疾病的再入院预测 | 针对循环系统疾病的再入院预测 | ||||
---|---|---|---|---|---|---|---|
AUC | ACC | F1 macro | AUC | ACC | F1 macro | ||
图采样模块 | 仅节点采样 | 0.716 7 | 0.701 9 | 0.637 0 | 0.698 3 | 0.731 8 | |
仅边采样 | 0.619 4 | ||||||
组合采样 | 0.729 1 | 0.712 8 | 0.655 8 | 0.705 7 | 0.735 5 | 0.626 5 | |
损失函数 | 无对比损失 | ||||||
完整损失 | 0.729 1 | 0.712 8 | 0.655 8 | 0.705 7 | 0.735 5 | 0.626 5 |
1 | JENCKS S F, WILLIAMS M V, COLEMAN E A. Rehospitalizations among patients in the Medicare fee-for-service program[J]. The New England Journal of Medicine, 2009, 360(14): 1418-1428. |
2 | BENJAMIN E J, MUNTNER P, ALONSO A, et al. Heart disease and stroke statistics — 2019 update: a report from the American Heart Association[J]. Circulation, 2019, 139(10): e56-e528. |
3 | TU K, MITIKU T F, IVERS N M, et al. Evaluation of Electronic Medical Record Administrative data Linked Database (EMRALD)[J]. The American Journal of Managed Care, 2014, 20(1): e15-e21. |
4 | GOLDMAN L E, SARKAR U, KESSELL E, et al. Support from hospital to home for elders: a randomized trial[J]. Annals of Internal Medicine, 2014, 161(7): 472-481. |
5 | MAHAJAN S M, HEIDENREICH P, ABBOTT B, et al. Predictive models for identifying risk of readmission after index hospitalization for heart failure: a systematic review[J]. European Journal of Cardiovascular Nursing, 2018, 17(8): 675-689. |
6 | LIU J, LIU P, LEI M R, et al. Readmission risk prediction model for patients with chronic heart failure: a systematic review and meta-analysis [J]. Iranian Journal of Public Health, 2022, 51(7): 1481-1493. |
7 | ZHANG W, CHENG W, FUJIWARA K, et al. Predictive modeling for hospital readmissions for patients with heart disease: an updated review from 2012—2023 [J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(4): 2259-2269. |
8 | GOLAS S B, SHIBAHARA T, AGBOOLA S, et al. A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data[J]. BMC Medical Informatics and Decision Making, 2018, 18: No.44. |
9 | KANSAGARA D, ENGLANDER H, SALANITRO A, et al. Risk prediction models for hospital readmission: a systematic review[J]. Journal of the American Medical Association, 2011, 306(15):1688-1698. |
10 | GOLDSTEIN B A, NAVAR A M, PENCINA M J, et al. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review[J]. Journal of the American Medical Informatics Association, 2017, 24(1): 198-208. |
11 | YAO L, MAO C, LUO Y. Graph convolutional networks for text classification[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 7370-7377. |
12 | EAPEN Z J, LIANG L, FONAROW G C, et al. Validated, electronic health record deployable prediction models for assessing patient risk of 30-day rehospitalization and mortality in older heart failure patients [J]. JACC: Heart Failure, 2013, 1(3): 245-251. |
13 | SCHAEFER G, EL-KAREH R, QUARTAROLO J, et al. Evaluation of the Yale New Haven Readmission Risk Score for pneumonia in a general hospital population[J]. The American Journal of Medicine, 2017, 130(9): 1107-1111.e1. |
14 | AU A G, McALISTER F A, BAKAL J A, et al. Predicting the risk of unplanned readmission or death within 30 days of discharge after a heart failure hospitalization[J]. American Heart Journal, 2012, 164(3): 365-372. |
15 | LENZI J, AVALDI V M, HERNANDEZ-BOUSSARD T, et al. Risk-adjustment models for heart failure patients’ 30-day mortality and readmission rates: the incremental value of clinical data abstracted from medical charts beyond hospital discharge record[J]. BMC Health Services Research, 2016, 16: No.473. |
16 | McADAMS-DeMARCO M A, LAW A, SALTER M L, et al. Frailty and early hospital readmission after kidney transplantation[J]. American Journal of Transplantation, 2013, 13(8): 2091-2095. |
17 | BROWN J R, ALONSO A, MAZIMBA S, et al. Improved 30 day heart failure rehospitalization prediction through the addition of device-measured parameters[J]. ESC Heart Failure, 2020, 7(6): 3762-3771. |
18 | JUNQUEIRA A R B, MIRZA F, BAIG M M. A machine learning model for predicting ICU readmissions and key risk factors: analysis from a longitudinal health records[J]. Health and Technology, 2019, 9(3): 297-309. |
19 | BEN-ASSULI O, HEART T, KLEMPFNER R, et al. Human-machine collaboration for feature selection and integration to improve congestive Heart failure risk prediction[J]. Decision Support Systems, 2023, 172: No.113982. |
20 | AMARASINGHAM R, PATEL P C, TOTO K, et al. Allocating scarce resources in real-time to reduce heart failure readmissions: a prospective, controlled study[J]. BMJ Quality and Safety, 2013, 22(12): 998-1005. |
21 | AWAN S E, BENNAMOUN M, SOHEL F, et al. Feature selection and transformation by machine learning reduce variable numbers and improve prediction for heart failure readmission or death [J]. PLoS ONE, 2019, 14(6): No.e0218760. |
22 | POLO FRIZ H, ESPOSITO V, MARANO G, et al. Machine learning and LACE index for predicting 30-day readmissions after heart failure hospitalization in elderly patients[J]. Internal and Emergency Medicine, 2022, 17(6): 1727-1737. |
23 | SHARMA V, KULKARNI V, MCALISTER F, et al. Predicting 30-day readmissions in patients with heart failure using administrative data: a machine learning approach [J]. Journal of Cardiac Failure, 2022, 28(5): 710-722. |
24 | FRIZZELL J D, LIANG L, SCHULTE P J, et al. Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: comparison of machine learning and other statistical approaches [J]. JAMA Cardiology, 2017, 2(2): 204-209. |
25 | AWAN S E, BENNAMOUN M, SOHEL F, et al. Machine learning-based prediction of heart failure readmission or death: implications of choosing the right model and the right metrics[J]. ESC Heart Failure, 2019, 6(2): 428-435. |
26 | SONG X, TONG Y, LUO Y, et al. Predicting 7-day unplanned readmission in elderly patients with coronary heart disease using machine learning[J]. Frontiers in Cardiovascular Medicine, 2023, 10: No.1190038. |
27 | BROWN J R, RICKET I M, REEVES R M, et al. Information extraction from electronic health records to predict readmission following acute myocardial infarction: does natural language processing using clinical notes improve prediction of readmission?[J]. Journal of the American Heart Association, 2022, 11(7): No. e024198. |
28 | XU Y, CHU X, YANG K, et al. SeqCare: sequential training with external medical knowledge graph for diagnosis prediction in healthcare data[C]// Proceedings of the ACM Web Conference 2023. New York: ACM, 2023:2819-2830. |
29 | HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1025-1035. |
30 | JANG E, GU S, POOLE B. Categorical reparameterization with Gumbel-Softmax[EB/OL]. [2024-05-13].. |
31 | YOU Y, CHEN T, SUI Y, et al. Graph contrastive learning with augmentations[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 5812-5823. |
32 | HARUTYUNYAN H, KACHATRIAN H, KALE D C, et al. Multitask learning and benchmarking with clinical time series data[J]. Scientific Data, 2019, 6: No.96. |
33 | JOHNSON A E W, POLLARD T J, SHEN L, et al. MIMIC-Ⅲ, a freely accessible critical care database[J]. Scientific Data, 2016, 3: No.160035. |
34 | CHOI E, BAHADORI M T, KULAS J A, et al. RETAIN: an interpretable predictive model for healthcare using reverse time attention mechanism[C]// Proceedings of the 30h International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 3512-3520. |
35 | GAO J, XIAO C, WANG Y, et al. StageNet: stage-aware neural networks for health risk prediction[C]// Proceedings of the Web Conference 2020. New York: ACM, 2020: 530-540. |
36 | 曾华堂,柯夏童,伍丽群,等. 人工智能在医疗质量管理中应用现状和效果范围综述[J]. 中国医院管理, 2023, 43(8):21-26. |
ZENG H T, KE X T, WU L Q, et al. Status and effectiveness of artificial intelligence in medical quality management: a scoping review [J]. Chinese Hospital Management, 2023, 43(8):21-26. |
[1] | Xueying LI, Kun YANG, Guoqing TU, Shubo LIU. Adversarial sample generation method for time-series data based on local augmentation [J]. Journal of Computer Applications, 2025, 45(5): 1573-1581. |
[2] | Lan YOU, Yuang ZHANG, Yuan LIU, Zhijun CHEN, Wei WANG, Xing ZENG, Zhangwei HE. Developer recommendation for open-source projects based on collaborative contribution network [J]. Journal of Computer Applications, 2025, 45(4): 1213-1222. |
[3] | Weichao DANG, Xinyu WEN, Gaimei GAO, Chunxia LIU. Multi-view and multi-scale contrastive learning for graph collaborative filtering [J]. Journal of Computer Applications, 2025, 45(4): 1061-1068. |
[4] | Renjie TIAN, Mingli JING, Long JIAO, Fei WANG. Recommendation algorithm of graph contrastive learning based on hybrid negative sampling [J]. Journal of Computer Applications, 2025, 45(4): 1053-1060. |
[5] | Haitao SUN, Jiayu LIN, Zuhong LIANG, Jie GUO. Data augmentation technique incorporating label confusion for Chinese text classification [J]. Journal of Computer Applications, 2025, 45(4): 1113-1119. |
[6] | Cong WANG, Yancui SHI. Group recommendation model by graph neural network based on multi-perspective learning [J]. Journal of Computer Applications, 2025, 45(4): 1205-1212. |
[7] | Chenwei SUN, Junli HOU, Xianggen LIU, Jiancheng LYU. Large language model prompt generation method for engineering drawing understanding [J]. Journal of Computer Applications, 2025, 45(3): 801-807. |
[8] | Qijian CAI, Wei TAN. Semantic graph enhanced multi-modal recommendation algorithm [J]. Journal of Computer Applications, 2025, 45(2): 421-427. |
[9] | Kun FU, Shicong YING, Tingting ZHENG, Jiajie QU, Jingyuan CUI, Jianwei LI. Graph data augmentation method for few-shot node classification [J]. Journal of Computer Applications, 2025, 45(2): 392-402. |
[10] | Xuewen YAN, Zhangjin HUANG. Few-shot image classification method based on contrast learning [J]. Journal of Computer Applications, 2025, 45(2): 383-391. |
[11] | Handa MA, Yadong WU. Multi-domain spatiotemporal hierarchical graph neural network for air quality prediction [J]. Journal of Computer Applications, 2025, 45(2): 444-452. |
[12] | Wenbo ZHAO, Zitong MA, Zhe YANG. Link prediction model based on directed hypergraph adaptive convolution [J]. Journal of Computer Applications, 2025, 45(1): 15-23. |
[13] | Jialin ZHANG, Qinghua REN, Qirong MAO. Speaker verification system utilizing global-local feature dependency for anti-spoofing [J]. Journal of Computer Applications, 2025, 45(1): 308-317. |
[14] | Xiaosheng YU, Zhixin WANG. Sequential recommendation model based on multi-level graph contrastive learning [J]. Journal of Computer Applications, 2025, 45(1): 106-114. |
[15] | Zidong CHENG, Peng LI, Feng ZHU. Potential relation mining in internet of things threat intelligence knowledge graph [J]. Journal of Computer Applications, 2025, 45(1): 24-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||