Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (6): 1971-1979.DOI: 10.11772/j.issn.1001-9081.2024060762
• Multimedia computing and computer simulation • Previous Articles
Ying HUANG(), Shengmei GAO, Guang CHEN, Su LIU
Received:
2024-06-05
Revised:
2024-09-17
Accepted:
2024-09-19
Online:
2024-10-12
Published:
2025-06-10
Contact:
Ying HUANG
About author:
HUANG Ying, born in 1978, Ph. D., associate professor. His research interests include image processing, image fusion, image quality evaluation, computational imaging, intelligent information processing, pattern recognition.Supported by:
通讯作者:
黄颖
作者简介:
黄颖(1978—),男,湖南岳阳人,副教授,博士,CCF会员,主要研究方向:图像处理、图像融合、图像质量评估、计算成像、智能信息处理、模式识别 huangying@cqupt.edu.cn基金资助:
CLC Number:
Ying HUANG, Shengmei GAO, Guang CHEN, Su LIU. Low-light image enhancement network combining signal-to-noise ratio guided dual-branch structure and histogram equalization[J]. Journal of Computer Applications, 2025, 45(6): 1971-1979.
黄颖, 高胜美, 陈广, 刘苏. 结合信噪比引导的双分支结构和直方图均衡的低照度图像增强网络[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1971-1979.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024060762
方法类型 | 网络 | LOL | LSRW | ||
---|---|---|---|---|---|
PSNR↑/ dB | SSIM↑ | PSNR↑/ dB | SSIM↑ | ||
基于模型的 方法 | LECARM | 14.41 | 0.541 3 | 15.32 | 0.421 8 |
SDD | 13.34 | 0.636 8 | 14.74 | 0.485 4 | |
监督学习 方法 | RetinexNet | 17.61 | 0.647 9 | 15.29 | 0.403 3 |
DeepUPE | 12.71 | 0.451 0 | 13.49 | 0.366 5 | |
KinD | 19.66 | 0.820 0 | 15.97 | 0.497 8 | |
无监督学习 方法Ⅰ | Zero-DCE | 14.86 | 0.558 8 | 15.71 | 0.446 4 |
EnlightenGAN | 17.48 | 0.650 7 | 0.458 8 | ||
RUAS | 16.40 | 0.499 6 | 13.97 | 0.475 7 | |
SCI | 14.78 | 0.522 0 | 15.11 | 0.419 6 | |
PSENet | 17.50 | 0.542 5 | 15.94 | 0.437 1 | |
本文网络 | 18.48 | ||||
无监督学习 方法Ⅱ | NeRCo* | 19.84 | 0.774 3 | 19.00 | 0.536 0 |
本文网络* | 19.78 | 0.716 4 | 18.28 | 0.589 1 |
Tab. 1 Scores of different networks on LOL and LSRW datasets
方法类型 | 网络 | LOL | LSRW | ||
---|---|---|---|---|---|
PSNR↑/ dB | SSIM↑ | PSNR↑/ dB | SSIM↑ | ||
基于模型的 方法 | LECARM | 14.41 | 0.541 3 | 15.32 | 0.421 8 |
SDD | 13.34 | 0.636 8 | 14.74 | 0.485 4 | |
监督学习 方法 | RetinexNet | 17.61 | 0.647 9 | 15.29 | 0.403 3 |
DeepUPE | 12.71 | 0.451 0 | 13.49 | 0.366 5 | |
KinD | 19.66 | 0.820 0 | 15.97 | 0.497 8 | |
无监督学习 方法Ⅰ | Zero-DCE | 14.86 | 0.558 8 | 15.71 | 0.446 4 |
EnlightenGAN | 17.48 | 0.650 7 | 0.458 8 | ||
RUAS | 16.40 | 0.499 6 | 13.97 | 0.475 7 | |
SCI | 14.78 | 0.522 0 | 15.11 | 0.419 6 | |
PSENet | 17.50 | 0.542 5 | 15.94 | 0.437 1 | |
本文网络 | 18.48 | ||||
无监督学习 方法Ⅱ | NeRCo* | 19.84 | 0.774 3 | 19.00 | 0.536 0 |
本文网络* | 19.78 | 0.716 4 | 18.28 | 0.589 1 |
变体 | LOL | LSRW | ||
---|---|---|---|---|
PSNR/dB↑ | SSIM↑ | PSNR/dB↑ | SSIM↑ | |
16.61 | 0.664 6 | 16.18 | 0.486 9 | |
19.22 | 0.662 4 | 17.63 | 0.452 7 | |
18.04 | 0.651 2 | 18.22 | 0.480 0 | |
19.06 | 0.681 0 | 16.37 | 0.462 7 | |
19.20 | 0.664 7 | 17.61 | 0.452 3 | |
19.12 | 0.639 9 | 16.86 | 0.441 8 | |
本文网络 | 19.24 | 0.721 6 | 18.48 | 0.494 6 |
Tab. 2 Quantitative comparison of variants
变体 | LOL | LSRW | ||
---|---|---|---|---|
PSNR/dB↑ | SSIM↑ | PSNR/dB↑ | SSIM↑ | |
16.61 | 0.664 6 | 16.18 | 0.486 9 | |
19.22 | 0.662 4 | 17.63 | 0.452 7 | |
18.04 | 0.651 2 | 18.22 | 0.480 0 | |
19.06 | 0.681 0 | 16.37 | 0.462 7 | |
19.20 | 0.664 7 | 17.61 | 0.452 3 | |
19.12 | 0.639 9 | 16.86 | 0.441 8 | |
本文网络 | 19.24 | 0.721 6 | 18.48 | 0.494 6 |
1 | RASHED H, RAMZY M I, VAQUERO V, et al. FuseMODNet: real-time camera and LiDAR based moving object detection for robust low-light autonomous driving [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2019: 2393-2402. |
2 | TAN X, XU K, CAO Y, et al. Night-time scene parsing with a large real dataset[J]. IEEE Transactions on Image Processing, 2021, 30: 9085-9098. |
3 | WANG Y, WAN R, YANG W, et al. Low-light image enhancement with normalizing flow[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 2604-2612. |
4 | XU X, WANG R, LU J. Low-light image enhancement via structure modeling and guidance[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 9893-9903. |
5 | WU Y, PAN C, WANG G, et al. Learning semantic-aware knowledge guidance for low-light image enhancement[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 1662-1671. |
6 | YANG W, WANG S, FANG Y, et al. From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3060-3069. |
7 | JIANG Y, GONG X, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision [J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349. |
8 | LIU R, MA L, ZHANG J, et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10556-10565. |
9 | LAND E H, McCANN J J. Lightness and retinex theory[J]. Journal of the Optical Society of America, 1971, 61(1): 1-11. |
10 | MA L, MA T, LIU R, et al. Toward fast, flexible, and robust low-light image enhancement [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5627-5636. |
11 | GUO C, LI C, GUO J, et al. Zero-reference deep curve estimation for low-light image enhancement[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1777-1786. |
12 | LI C, GUO C, LOY C C. Learning to enhance low-light image via zero-reference deep curve estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4225-4238. |
13 | NGUYEN H, TRAN D, NGUYEN K, et al. PSENet: progressive self-enhancement network for unsupervised extreme-light image enhancement[C]// Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 1756-1765. |
14 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
15 | STARK J A. Adaptive image contrast enhancement using generalizations of histogram equalization[J]. IEEE Transactions on Image Processing, 2000, 9(5): 889-896. |
16 | GUO X, LI Y, LING H. LIME: low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 982-993. |
17 | 韩殿元. 低照度下视频图像保细节直方图均衡化方法[J]. 计算机仿真, 2013, 30(8): 233-236, 300. |
HAN D Y. Details keeping histogram equalization approach of low-illumination video image[J]. Computer Simulation, 2013, 30(8): 233-236, 300. | |
18 | WEI C, WANG W, YANG W, et al. Deep Retinex decomposition for low-light enhancement[C]// Proceedings of the 2018 British Machine Vision Conference. Durham: BMVA Press, 2018: No.451. |
19 | FU Z, YANG Y, TU X, et al. Learning a simple low-light image enhancer from paired low-light instances[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 22252-22261. |
20 | MA T, GUO M, YU Z, et al. RetinexGAN: unsupervised low-light enhancement with two-layer convolutional decomposition networks [J]. IEEE Access, 2021, 9: 56539-56550. |
21 | ZHAO Z, XIONG B, WANG L, et al. RetinexDIP: a unified deep framework for low-light image enhancement[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(3): 1076-1088. |
22 | YANG S, DING M, WU Y, et al. Implicit neural representation for cooperative low-light image enhancement[C]// Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023:12872-12881. |
23 | ZHANG Y, ZHANG J, GUO X. Kindling the darkness: a practical low-light image enhancer [C]// Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 1632-1640. |
24 | WU Y, SONG W, ZHENG J, et al. N2PN: non-reference two-pathway network for low-light image enhancement[J]. Applied Intelligence, 2022, 52(4): 3559-3576. |
25 | RONNEBERGER O, FISCHER P, BROX T, et al. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
26 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. |
27 | DABOV K, FOI A, KATKOVNIK V, et al. Image denoising with block-matching and 3D filtering[C]// Proceedings of the SPIE 6064, 2006 Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning. Bellingham, WA: SPIE, 2006: No.606414. |
28 | BUADES A, COLL B, MOREL J M. A non-local algorithm for image denoising[C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition — Volume 2. Piscataway: IEEE, 2005: 60-65. |
29 | JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9906. Cham: Springer, 2016: 694-711. |
30 | JOLICOEUR-MARTINEAU A. The relativistic discriminator: a key element missing from standard GAN [EB/OL]. [2024-05-17].. |
31 | MAO X, LI Q, XIE H, et al. Least squares generative adversarial networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2813-2821. |
32 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255. |
33 | LIU S, DENG W. Very deep convolutional neural network based image classification using small training sample size[C]// Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition. Piscataway: IEEE, 2015: 730-734. |
34 | HAI J, XUAN Z, YANG R, et al. R2RNet: low-light image enhancement via real-low to real-normal network[J]. Journal of Visual Communication and Image Representation, 2023, 90: No.103712. |
35 | WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. |
36 | REN Y, YING Z, LI T H, et al. LECARM: low-light image enhancement using the camera response model[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(4): 968-981. |
37 | HAO S, HAN X, GUO Y, et al. Low-light image enhancement with semi-decoupled decomposition[J]. IEEE Transactions on Multimedia, 2020, 22(12): 3025-3038. |
38 | WANG R, ZHANG Q, FU C W, et al. Underexposed photo enhancement using deep illumination estimation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 6842-6850. |
[1] | Zonghang WU, Dong ZHANG, Guanyu LI. Multimodal fusion recommendation algorithm based on joint self-supervised learning [J]. Journal of Computer Applications, 2025, 45(6): 1858-1868. |
[2] | Yulin HE, Xu LI, Yingting HE, Laizhong CUI, Zhexue HUANG. Subspace Gaussian mixture model clustering ensemble algorithm based on maximum mean discrepancy [J]. Journal of Computer Applications, 2025, 45(6): 1712-1723. |
[3] | Hui LI, Bingzhi JIA, Chenxi WANG, Ziyu DONG, Jilong LI, Zhaoman ZHONG, Yanyan CHEN. Generative adversarial network underwater image enhancement model based on Swin Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1439-1446. |
[4] | Yali YANG, Ying LI, Yutao ZHANG, Peihua SONG. Review of multi-modal research methods for face recognition [J]. Journal of Computer Applications, 2025, 45(5): 1645-1657. |
[5] | Wenpeng WANG, Yinchang QIN, Wenxuan SHI. Review of unsupervised deep learning methods for industrial defect detection [J]. Journal of Computer Applications, 2025, 45(5): 1658-1670. |
[6] | Yang ZHOU, Hui LI. Remote sensing image building extraction network based on dual promotion of semantic and detailed features [J]. Journal of Computer Applications, 2025, 45(4): 1310-1316. |
[7] | Junxiu AN, Linwang YANG, Yuan LIU. Unsupervised text style transfer based on semantic perception of proximity [J]. Journal of Computer Applications, 2025, 45(4): 1139-1147. |
[8] | Shiyue GUO, Jianwu DANG, Yangping WANG, Jiu YONG. 3D hand pose estimation combining attention mechanism and multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(4): 1293-1299. |
[9] | Lihu PAN, Shouxin PENG, Rui ZHANG, Zhiyang XUE, Xuzhen MAO. Video anomaly detection for moving foreground regions [J]. Journal of Computer Applications, 2025, 45(4): 1300-1309. |
[10] | Yiding WANG, Zehao WANG, Yaoli LI, Shaoqing CAI, Yuan YUAN. Multi-scale 2D-Adaboost microscopic image recognition algorithm of Chinese medicinal materials powder [J]. Journal of Computer Applications, 2025, 45(4): 1325-1332. |
[11] | Handa MA, Yadong WU. Multi-domain spatiotemporal hierarchical graph neural network for air quality prediction [J]. Journal of Computer Applications, 2025, 45(2): 444-452. |
[12] | Hong SHANGGUAN, Huiying REN, Xiong ZHANG, Xinglong HAN, Zhiguo GUI, Yanling WANG. Low-dose CT denoising model based on dual encoder-decoder generative adversarial network [J]. Journal of Computer Applications, 2025, 45(2): 624-632. |
[13] | Zhongwei ZHANG, Jun WANG, Shudong LIU, Zhiheng WANG. Object detection in remote sensing image based on multi-scale feature fusion and weighted boxes fusion [J]. Journal of Computer Applications, 2025, 45(2): 633-639. |
[14] | Qiurun HE, Jie HU, Bo PENG, Tianyuan LI. Fabric defect detection algorithm based on context information and multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(2): 640-646. |
[15] | Pengcheng SONG, Lijun GUO, Rong ZHANG. Weakly supervised video anomaly detection with local-global temporal dependency [J]. Journal of Computer Applications, 2025, 45(1): 240-246. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||