Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (8): 2646-2655.DOI: 10.11772/j.issn.1001-9081.2024081092
• Advanced computing • Previous Articles
Chao JING1,2, Yutao QUAN1, Yan CHEN1,2()
Received:
2024-08-05
Revised:
2024-10-20
Accepted:
2024-10-31
Online:
2024-11-19
Published:
2025-08-10
Contact:
Yan CHEN
About author:
JING Chao, born in 1983, Ph. D., professor. His research interests include high-performance computing, intelligent optimization algorithms.Supported by:
通讯作者:
陈艳
作者简介:
敬超(1983—),男,河南长葛人,教授,博士,CCF高级会员,主要研究方向:高性能计算、智能优化算法基金资助:
CLC Number:
Chao JING, Yutao QUAN, Yan CHEN. Improved multi-layer perceptron and attention model-based power consumption prediction algorithm[J]. Journal of Computer Applications, 2025, 45(8): 2646-2655.
敬超, 全育涛, 陈艳. 基于多层感知机-注意力模型的功耗预测算法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2646-2655.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024081092
系统指标 | 单位 | 描述 |
---|---|---|
CPU利用率 | % | 各CPU核心的利用率 |
CPU频率 | MHz | 各CPU核心的频率 |
占用内存 | MB | 占用的系统内存 |
网络I/O | % | 网卡利用率 |
磁盘I/O速度 | MB·s-1 | 磁盘I/O的速度 |
缓存未命中 | 所有CPU核心的缓存未命中次数之和 | |
缓存引用 | 所有CPU核心的缓存引用次数之和 | |
L1数据缓存加载 | CPU的L1数据缓存的加载次数 | |
L1数据缓存储存 | CPU的L1数据缓存的存储次数 | |
散热器转速 | % | GPU散热器的转速 |
GPU功耗状态 | GPU功耗状态 | |
GPU内存占用 | MB | GPU内存的占用量 |
GPU利用率 | % | GPU的利用率 |
PCIe发送 | MB·s-1 | PCIe传输数据的速度 |
PCIe接收 | MB·s-1 | PCIe接收数据的速度 |
GPU温度 | ℃ | GPU核心的温度 |
GPU频率 | MHz | GPU核心的频率 |
GPU内存频率 | MHz | GPU内存的频率 |
Tab. 1 Collected system features for CPU/GPU servers
系统指标 | 单位 | 描述 |
---|---|---|
CPU利用率 | % | 各CPU核心的利用率 |
CPU频率 | MHz | 各CPU核心的频率 |
占用内存 | MB | 占用的系统内存 |
网络I/O | % | 网卡利用率 |
磁盘I/O速度 | MB·s-1 | 磁盘I/O的速度 |
缓存未命中 | 所有CPU核心的缓存未命中次数之和 | |
缓存引用 | 所有CPU核心的缓存引用次数之和 | |
L1数据缓存加载 | CPU的L1数据缓存的加载次数 | |
L1数据缓存储存 | CPU的L1数据缓存的存储次数 | |
散热器转速 | % | GPU散热器的转速 |
GPU功耗状态 | GPU功耗状态 | |
GPU内存占用 | MB | GPU内存的占用量 |
GPU利用率 | % | GPU的利用率 |
PCIe发送 | MB·s-1 | PCIe传输数据的速度 |
PCIe接收 | MB·s-1 | PCIe接收数据的速度 |
GPU温度 | ℃ | GPU核心的温度 |
GPU频率 | MHz | GPU核心的频率 |
GPU内存频率 | MHz | GPU内存的频率 |
超参数 | 设置值 | 超参数 | 设置值 |
---|---|---|---|
嵌入维度 | 16 | 优化器 | Adam |
学习率 | 1×10-4 | 时间窗口大小 | 8 |
损失函数 | mse | 权重衰减 | 1×10-3 |
批尺寸 | 32 | 提前停止阈值 | 150 |
Tab. 2 Hyperparameter setting
超参数 | 设置值 | 超参数 | 设置值 |
---|---|---|---|
嵌入维度 | 16 | 优化器 | Adam |
学习率 | 1×10-4 | 时间窗口大小 | 8 |
损失函数 | mse | 权重衰减 | 1×10-3 |
批尺寸 | 32 | 提前停止阈值 | 150 |
算法 | 不同工作负载下的MAE | ||||
---|---|---|---|---|---|
oneDNN | gemm | blk | memtest | busspd | |
ENN_PM | 20.9 | 10.9 | 5.62 | 3.83 | |
MLSTM_PM | 47.8 | 11.2 | 9.78 | 4.22 | 6.06 |
CBLA_PM | 18.8 | 6.49 | 3.88 | 5.30 | |
MLR_PM | 31.0 | 6.8 | 2.85 | ||
Prophet | 23.0 | 5.54 | 2.55 | 3.23 |
Tab. 3 Prediction MAE of each algorithm under different workload
算法 | 不同工作负载下的MAE | ||||
---|---|---|---|---|---|
oneDNN | gemm | blk | memtest | busspd | |
ENN_PM | 20.9 | 10.9 | 5.62 | 3.83 | |
MLSTM_PM | 47.8 | 11.2 | 9.78 | 4.22 | 6.06 |
CBLA_PM | 18.8 | 6.49 | 3.88 | 5.30 | |
MLR_PM | 31.0 | 6.8 | 2.85 | ||
Prophet | 23.0 | 5.54 | 2.55 | 3.23 |
算法 | 不同工作负载下的MRE | ||||
---|---|---|---|---|---|
oneDNN | gemm | blk | memtest | busspd | |
ENN_PM | 8.44 | 1.55 | |||
MLSTM_PM | 16.80 | 3.82 | 2.88 | 2.65 | 2.16 |
CBLA_PM | 6.31 | 2.05 | 2.31 | 2.46 | |
MLR_PM | 16.60 | 2.76 | 1.96 | ||
Prophet | 10.50 | 4.01 | 1.66 | 1.64 | 1.23 |
Tab. 4 Prediction MRE of each algorithm under different workload
算法 | 不同工作负载下的MRE | ||||
---|---|---|---|---|---|
oneDNN | gemm | blk | memtest | busspd | |
ENN_PM | 8.44 | 1.55 | |||
MLSTM_PM | 16.80 | 3.82 | 2.88 | 2.65 | 2.16 |
CBLA_PM | 6.31 | 2.05 | 2.31 | 2.46 | |
MLR_PM | 16.60 | 2.76 | 1.96 | ||
Prophet | 10.50 | 4.01 | 1.66 | 1.64 | 1.23 |
预测算法 | 训练开销 | 推理开销 |
---|---|---|
ENN_PM | 91.7 | |
MLSTM_PM | 119.1 | |
CBLA_PM | 117.2 | |
Prophet | 153.7 |
Tab. 5 Time overhead of each algorithm
预测算法 | 训练开销 | 推理开销 |
---|---|---|
ENN_PM | 91.7 | |
MLSTM_PM | 119.1 | |
CBLA_PM | 117.2 | |
Prophet | 153.7 |
[1] | OpenAI. GPT-4 technical report[R/OL]. [2024-04-15].. |
[2] | ESSER P, KULAL S, BLATTMANN A, et al. Scaling rectified flow transformers for high-resolution image synthesis[C]// Proceedings of the 41st International Conference on Machine Learning. New York: JMLR.org, 2024: 12606-12633. |
[3] | ZHU Z, WANG X, ZHAO W, et al. Is Sora a world simulator? a comprehensive survey on general world models and beyond[EB/OL]. [2024-06-23].. |
[4] | STRUBELL E, GANESH A, McCALLUM A. Energy and policy considerations for deep learning in NLP[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 3645-3650. |
[5] | CHU W X, WANG C C. A review on airflow management in data centers[J]. Applied Energy, 2019, 240: 84-119. |
[6] | TATCHELL-EVANS M, KAPUR N, SUMMERS J, et al. An experimental and theoretical investigation of the extent of bypass air within data centres employing aisle containment, and its impact on power consumption[J]. Applied Energy, 2017, 186(Pt 3): 457-469. |
[7] | MAO J, PENG X, CAO T, et al. A frequency-aware management strategy for virtual machines in DVFS-enabled clouds[J]. Sustainable Computing: Informatics and Systems, 2022, 33: No.100643. |
[8] | CHOU C H, BHUYAN L N, WONG D. μDPM: dynamic power management for the microsecond era[C]// Proceedings of the 2019 IEEE International Symposium on High Performance Computer Architecture. Piscataway: IEEE, 2019: 120-132. |
[9] | AGRAWAL S. A lazy DVS approach for dynamic real time system[J]. ACM SIGBED Review, 2016, 13(4): 7-12. |
[10] | ZHU P, LUO D, CHEN X. Fault-tolerant and power-aware scheduling in embedded real-time systems[C]// Proceedings of the 2020 International Conference on Computer, Information and Telecommunication Systems. Piscataway: IEEE, 2020: 1-5. |
[11] | PAUL R, DANELUTTO M. Power aware scheduling of tasks on FPGAs in data centers[C]// Proceedings of the 32nd Euromicro International Conference on Parallel, Distributed and Network-based Processing. Piscataway: IEEE, 2024: 148-152. |
[12] | LIN W, WU G, WANG X, et al. An artificial neural network approach to power consumption model construction for servers in cloud data centers[J]. IEEE Transactions on Sustainable Computing, 2020, 5(3): 329-340. |
[13] | JING C, LI J. CBLA_PM: an improved ANN-based power consumption prediction algorithm for multi-type jobs on heterogeneous computing server[J]. Cluster Computing, 2023, 27(1): 377-394. |
[14] | LI C, ZHU D, HU C, et al. ECDX: energy consumption prediction model based on distance correlation and XGBoost for edge data center[J]. Information Sciences, 2023, 643: No.119218. |
[15] | LIN W, YU T, GAO C, et al. A hardware-aware CPU power measurement based on the power-exponent function model for cloud servers[J]. Information Sciences, 2021, 547: 1045-1065. |
[16] | 王海,高岭,宋振孝,等. 基于GINI指数分类的嵌入式CPU功耗预测方法[J]. 计算机学报, 2015, 38(2): 397-407. |
WANG H, GAO L, SONG Z X, et al. A method of the power consumption prediction of embedded CPU based on GINI index classification method[J]. Chinese Journal of Computers, 2015, 38(2): 397-407. | |
[17] | 刘辛,沈立,苏博,等. 多核处理器的功耗估算模型[J]. 软件学报, 2015, 26(7): 1840-1852. |
LIU X, SHEN L, SU B, et al. Power estimation model on multi-core platforms[J]. Journal of Software, 2015, 26(7): 1840-1852. | |
[18] | GHOSH S, CHANDRASEKARAN S, CHAPMAN B. Statistical modeling of power/energy of scientific kernels on a multi-GPU system[C]// Proceedings of the 2013 International Green Computing Conference. Piscataway: IEEE, 2013: 1-6. |
[19] | SAGI M, DOAN N A V, RAPP M, et al. A lightweight nonlinear methodology to accurately model multicore processor power[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(11): 3152-3164. |
[20] | 李伟,郎俊豪,陈韬,等. 基于Amdahl定律的异构多核密码处理器能效模型研究[J]. 电子学报, 2024, 52(3): 849-862. |
LI W, LANG J H, CHEN T, et al. Amdahl’s law-based energy-efficient model for heterogeneous multicore crypto-processor[J]. Acta Electronica Sinica, 2024, 52(3): 849-862. | |
[21] | HEINRICH F C, CORNEBIZE T, DEGOMME A, et al. Predicting the energy-consumption of MPI applications at scale using only a single node[C]// Proceedings of the 2017 IEEE International Conference on Cluster Computing. Piscataway: IEEE, 2017: 92-102. |
[22] | DUAN L, ZHAN D, HOHNERLEIN J. Optimizing cloud data center energy efficiency via dynamic prediction of CPU idle intervals[C]// Proceedings of the IEEE 8th International Conference on Cloud Computing. Piscataway: IEEE, 2015: 985-988. |
[23] | WU W, LIN W, HE L, et al. A power consumption model for cloud servers based on Elman neural network[J]. IEEE Transactions on Cloud Computing, 2021, 9(4): 1268-1277. |
[24] | ZHANG X, SHEN Z, XIA B, et al. Estimating power consumption of containers and virtual machines in data centers[C]// Proceedings of the 2020 IEEE International Conference on Cluster Computing. Piscataway: IEEE, 2020: 288-293. |
[25] | CHAUDHARI P J, KANEKO S, OKAMURA T. Estimating power consumption of collocated workloads in a real-world data center[C]// Proceedings of the 2023 International Conference on Software, Telecommunications and Computer Networks. Piscataway: IEEE, 2023: 1-7. |
[26] | ZHOU Z, SHOJAFAR M, ALAZAB M, et al. IECL: an intelligent energy consumption model for cloud manufacturing[J]. IEEE Transactions on Industrial Informatics, 2022, 18(12): 8967-8976. |
[27] | SHEN Z, ZHANG X, LIU Z, et al. PM-VE: power metering model for virtualization environments in cloud data centers[J]. IEEE Transactions on Cloud Computing, 2023, 11(3): 3126-3138. |
[28] | SHEN Z, LIU B, ZHOU Q, et al. Cost-sensitive tensor-based dual-stage attention LSTM with feature selection for data center server power forecasting[J]. ACM Transactions on Intelligent Systems and Technology, 2023, 14(2): No.24. |
[29] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
[30] | Unified Acceleration (UXL) Foundation. oneAPI Deep Neural Network Library (oneDNN)[CP/OL]. [2024-04-06].. |
[31] | HU B, ROSSBACH C J. Altis: modernizing GPGPU Benchmarks[C]// Proceedings of the 2020 IEEE International Symposium on Performance Analysis of Systems and Software. Piscataway: IEEE, 2020: 1-11. |
[32] | Linux Kernel Organization. The Linux kernel archives[EB/OL]. [2024-04-06].. |
[33] | CAZABON C. Memtester version 4[CP/OL]. [2024-06-01].. |
[34] | FFmpeg. FFmpeg[EB/OL]. [2024-06-10].. |
[35] | Blender[EB/OL]. [2024-06-10].. |
[36] | Open CV: open source computer vision library[DB/OL]. [2024-06-10].. |
[1] | Haifeng WU, Liqing TAO, Yusheng CHENG. Partial label regression algorithm integrating feature attention and residual connection [J]. Journal of Computer Applications, 2025, 45(8): 2530-2536. |
[2] | Shuo ZHANG, Guokai SUN, Yuan ZHUANG, Xiaoyu FENG, Jingzhi WANG. Dynamic detection method of eclipse attacks for blockchain node analysis [J]. Journal of Computer Applications, 2025, 45(8): 2428-2436. |
[3] | Chen LIANG, Yisen WANG, Qiang WEI, Jiang DU. Source code vulnerability detection method based on Transformer-GCN [J]. Journal of Computer Applications, 2025, 45(7): 2296-2303. |
[4] | Haoyu LIU, Pengwei KONG, Yaoli WANG, Qing CHANG. Pedestrian detection algorithm based on multi-view information [J]. Journal of Computer Applications, 2025, 45(7): 2325-2332. |
[5] | Xiaoqiang ZHAO, Yongyong LIU, Yongyong HUI, Kai LIU. Batch process quality prediction model using improved time-domain convolutional network with multi-head self-attention mechanism [J]. Journal of Computer Applications, 2025, 45(7): 2245-2252. |
[6] | Huibin WANG, Zhan’ao HU, Jie HU, Yuanwei XU, Bo WEN. Time series forecasting model based on segmented attention mechanism [J]. Journal of Computer Applications, 2025, 45(7): 2262-2268. |
[7] | Yihan WANG, Chong LU, Zhongyuan CHEN. Multimodal sentiment analysis model with cross-modal text information enhancement [J]. Journal of Computer Applications, 2025, 45(7): 2237-2244. |
[8] | Haijie WANG, Guangxin ZHANG, Hai SHI, Shu CHEN. Document-level relation extraction based on entity representation enhancement [J]. Journal of Computer Applications, 2025, 45(6): 1809-1816. |
[9] | Yuan SONG, Xin CHEN, Yarong LI, Yongwei LI, Yang LIU, Zhen ZHAO. Single-channel speech separation model based on auditory modulation Siamese network [J]. Journal of Computer Applications, 2025, 45(6): 2025-2033. |
[10] | Sheping ZHAI, Yan HUANG, Qing YANG, Rui YANG. Multi-view entity alignment combining triples and text attributes [J]. Journal of Computer Applications, 2025, 45(6): 1793-1800. |
[11] | Xiang WANG, Qianqian CUI, Xiaoming ZHANG, Jianchao WANG, Zhenzhou WANG, Jialin SONG. Wireless capsule endoscopy image classification model based on improved ConvNeXt [J]. Journal of Computer Applications, 2025, 45(6): 2016-2024. |
[12] | Weigang LI, Xinyi LI, Yongqiang WANG, Yuntao ZHAO. Point cloud classification and segmentation method based on adaptive dynamic graph convolution and parameter-free attention [J]. Journal of Computer Applications, 2025, 45(6): 1980-1986. |
[13] | Dan WANG, Wenhao ZHANG, Lijuan PENG. Channel estimation of reconfigurable intelligent surface assisted communication system based on deep learning [J]. Journal of Computer Applications, 2025, 45(5): 1613-1618. |
[14] | Hui LI, Bingzhi JIA, Chenxi WANG, Ziyu DONG, Jilong LI, Zhaoman ZHONG, Yanyan CHEN. Generative adversarial network underwater image enhancement model based on Swin Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1439-1446. |
[15] | Man CHEN, Xiaojun YANG, Huimin YANG. Pedestrian trajectory prediction based on graph convolutional network and endpoint induction [J]. Journal of Computer Applications, 2025, 45(5): 1480-1487. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||