[1] 刘康,张元哲,纪国良,等.基于表示学习的知识库问答研究进展与展望[J].自动化学报,2016,42(6):807-818.(LIU K, ZHANG Y Z, JI G L, et al. Representation learning for question answering over knowledge base:an overview[J]. Acta Automatica Sinica, 2016, 42(6):807-818.) [2] 王东升,王卫民,王石,等.面向限定领域问答系统的自然语言理解方法综述[J].计算机科学,2017,44(8):1-8.(WANG D S, WANG W M, WANG S, et al. Research on domain-specific question answering system oriented natural language understanding:a survey[J]. Computer Science, 2017, 44(8):1-8.) [3] BORDES A, CHOPRA S, WESTON J. Question answering with subgraph embeddings[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:ACL, 2014:615-620. [4] YIH W T, CHANG M W, HE X, et al. Semantic parsing via staged query graph generation:question answering with knowledge base[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing. Stroudsburg, PA:ACL, 2015:1321-1331. [5] DAI Z, LI L, XU W. CFO:conditional focused neural question answering with large-scale knowledge bases[C]//Proceedings of the 2016 Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:ACL, 2016:800-810. [6] 荣光辉,黄震华.基于深度学习的问答匹配方法[J].计算机应用,2017,37(10):2861-2865.(RONG G H, HUANG Z H. Question answer matching method based on deep learning[J]. Journal of Computer Applications, 2017, 37(10):2861-2865.) [7] 庄福振,罗平,何清,等.迁移学习研究进展[J].软件学报,2015,26(1):26-39.(ZHUANG F Z, LUO P, HE Q, et al. Survey on transfer learning research[J]. Journal of Software, 2015, 26(1):26-39.) [8] DAI W, YANG Q, XUE G R, et al. Boosting for transfer learning[C]//Proceedings of the 2007 International Conference on Machine Learning. New York:ACM, 2007:193-200. [9] OQUAB M, BOTTOUL, LAPTEV I, et al. Learning and transferring mid-level image representations using convolutional neural networks[C]//Proceedings of the 2014 International Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2014:1717-1724. [10] BOUSMALIS K, TRIGEORGIS G, SILBERMAN N, et al. Domain separation networks[C]//Proceedings of the 2016 Annual Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2016:343-351. [11] GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. Journal of Machine Learning Research, 2017, 17(1):2096-2030. [12] RAINA R, BATTLE A, LEE H, et al. Self-taught learning:transfer learning from unlabeled data[C]//Proceedings of the 2007 International Conference on Machine Learning. New York:ACM, 2007:759-766. [13] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 2013 Annual Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2013:3111-3119. [14] PENNINGTON J, SOCHER R, MANNING C. Glove:global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:ACL, 2014:1532-1543. [15] BERANT J, CHOU A, FROSTIG R, et al. Semantic parsing on freebase from question-answer pairs[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:ACL, 2013:1533-1544. [16] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. (2013-09-07)[2017-03-15]. https://arxiv.org/pdf/1301.3781.pdf. [17] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]//Proceedings of the 2014 Annual Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2014:3104-3112. [18] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 2012, 9(8):1735-1780. [19] BORDES A, USUNIER N, CHOPRA S, et al. Large-scale simple question answering with memory networks[EB/OL]. (2015-06-05)[2017-04-12]. https://arxiv.org/pdf/1506.02075.pdf. [20] BOLLACKER K, KVANS C, PARITOSH P, et al. Freebase:a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 International Conference on Management of Data. New York:ACM, 2008:1247-1250. [21] LI P, LI W, HE Z, et al. Dataset and neural recurrent sequence labeling model for open-domain factoid question answering[EB/OL]. (2016-09-01)[2017-04-17]. https://arxiv.org/pdf/1607.06275.pdf. [22] FADER A, ZETTLEMOYER L, ETZIONI O. Paraphrase-driven learning for open question answering[C]//Proceedings of the 2013 Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:ACL, 2013:1608-1618. [23] ABADI M, BARHAM P, CHEN J, et al. TensorFlow:a system for large-scale machine learning[C]//Proceedings of the 2016 Symposium on Operating Systems Design and Implementation. Berkeley, CA:USENIX, 2016:265-283. [24] KINGMA D P, BA J. Adam:a method for stochastic optimization[EB/OL]. (2017-01-30)[2017-04-21]. https://arxiv.org/pdf/1412.6980.pdf. [25] LAURENS V D M, HINTON G, HINTON V D M G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9:2579-2605. [26] YU L, ZHANG W, WANG J, et al. SeqGAN:sequence generative adversarial nets with policy gradient[C]//Proceedings of the 2016 Conference on Artificial Intelligence. Menlo Park, CA:AAAI, 2016:2852-2858. |