[1] PELED S, YESHURUN Y. Superresolution in MRI:application to human white matter fiber tract visualization by diffusion tensor imaging[J]. Magnetic Resonance in Medicine, 2001, 45(1):29-35. [2] SHI W, CABALLERO J, LEDIG C, et al. Cardiac image super-resolution with global correspondence using multi-atlas patchmatch[C]//MICCAI 2013:Proceedings of the 2013 Medical Image Computing and Computer-Assisted Intervention. Berlin:Springer, 2013:9-16. [3] ZOU W W, YUEN P C. Very low resolution face recognition problem[J]. IEEE Transactions on Image Processing, 2012, 21(1):327-340. [4] THORNTON M W, ATKINSON P M, HOLLAND D A. Sub-pixel mapping of rural land cover objects from fine spatial resolution satellite sensor imagery using super-resolution pixel-swapping[J]. International Journal of Remote Sensing, 2006, 27(3):473-491. [5] 苏衡,周杰,张志浩.超分辨率图像重建方法综述[J].自动化学报,2013,39(8):1202-1213.(SU H, ZHOU J, ZHANG Z H. Survey of super-resolution image reconstruction methods[J]. Acta Automatica Sinica, 2013, 39(8):1202-1213.) [6] BÄTZ M, EICHENSEER A, SEILER J, et al. Hybrid super-resolution combining example-based single-image and interpolation-based multi-image reconstruction approaches[C]//ICIP 2015:Proceedings of the 2015 IEEE International Conference on Image Processing. Piscataway, NJ:IEEE, 2015:58-62. [7] LIN Z C, SHUM H Y. Fundamental limits of reconstruction-based superresolution algorithms under local translation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1):83-97. [8] 周靖鸿,周璀,朱建军,等.基于非下采样轮廓波变换遥感影像超分辨重建方法[J].光学学报,2015,35(1):106-114.(ZHOU J H, ZHOU C, ZHU J J, et al. A method of super-resolution reconstruction for remote sensing image based on non-subsampled contourlet transform[J]. Acta Optica Sinica, 2015, 35(1):106-114.) [9] 练秋生,张伟.基于图像块分类稀疏表示的超分辨率重构算法[J].电子学报,2012,40(5):920-925.(LIAN Q S, ZHANG W. Image super-resolution algorithms based on sparse representation of classified image patches[J]. Acta Electronica Sinica, 2012, 40(5):920-925.) [10] KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1981, 29(6):1153-1160. [11] IRANI M, PELEG S. Super resolution from image sequences[C]//Proceedings of the 10th International Conference on Pattern Recognition. Piscataway, NJ:IEEE, 1990:115-120. [12] IRANI M, PELEG S. Improving resolution by image registration[J]. CVGIP:Graphical Models and Image Processing, 1991, 53(3):231-239. [13] SCHULTZ R R, STEVENSON R L. Extraction of high-resolution frames from video sequences[J]. IEEE Transactions on Image Processing, 1996, 5(6):996-1011. [14] STARK H, OSKOUI P. High-resolution image recovery from image-plane arrays, using convex projections[J]. Journal of the Optical Society of America, 1989, 6(11):1715-1726. [15] DONG C, CHEN C L, HE K, et al. Learning a deep convolutional network for image super-resolution[M]//FLEET D, PAJDLA T, SCHIELE B, et al. Computer Vision-ECCV 2014, LNCS 8692. Berlin:Springer, 2014:184-199. [16] DONG C, CHEN C L, TANG X. Accelerating the super-resolution convolutional neural network[C]//Proceedings of the 201614th European Conference on Computer Vision. Berlin:Springer, 2016:391-407. [17] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]//CVPR 2016:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:1637-1645. [18] LEDIG C, THEIS L, HUSZAR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//CVPR 2017:Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2017:105-114. [19] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//NIPS'14:Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2014, 2:2672-2680. [20] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL].[2017-07-20]. http://xueshu.baidu.com/s?wd=paperuri%3A%289cf80c74b1e5d54b1872f902dabf8124%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Farxiv.org%2Fpdf%2F1511.06434&ie=utf-8&sc_us=7608204741076306321. [21] PATHAK D, KRAHENBUHL P, DONAHUE J, et al. Context encoders:feature learning by inpainting[C]//CVPR 2016:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:2536-2544. [22] ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[EB/OL].[2017-12-09]. http://sse.tongji.edu.cn/yingshen/course/PR2017Fall/readings/Image-To-Image_Translation.pdf. [23] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:770-778. [24] ODENA A, DUMOULIN V, OLAH C. Deconvolution and checkerboard artifacts[EB/OL].[2017-07-09]. https://distill.pub/2016/deconv-checkerboard/. [25] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//CVPRW 2017:Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington, DC:IEEE Computer Society, 2017:1132-1140. [26] NAH S, KIM T H, LEE K M. Deep multi-scale convolutional neural network for dynamic scene deblurring[EB/OL].[2017-06-09]. http://openaccess.thecvf.com/content_cvpr_2017/papers/Nah_Deep_Multi-Scale_Convolutional_CVPR_2017_paper.pdf. [27] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2016-12-09]. http://x-algo.cn/wp-content/uploads/2017/01/VERY-DEEP-CONVOLUTIONAL-NETWORK-SFOR-LARGE-SCALE-IMAGE-RECOGNITION.pdf. [28] SUN J, SUN J, XU Z. Image super-resolution using gradient profile prior[C]//CVPR 2008:Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2008:1-8. [29] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//CVPR 2015:Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2015:1-9. [30] NIELSEN M. Improving the way neural networks learn[EB/OL].[2016-12-19]. http://neuralnetworksanddeeplearning.com/chap3.html. [31] Data Science Bowl 2017[EB/OL].[2016-12-19]. https://www.kaggle.com/c/data-science-bowl-2017. [32] 佟雨兵,张其善,祁云平.基于PSNR与SSIM联合的图像质量评价模型[J].中国图象图形学报,2006,11(12):1758-1763.(TONG Y B, ZHANG Q S, QI Y P. Image quality assessing by combining PSNR with SSIM[J]. Journal of Image and Graphics, 2006, 11(12):1758-1763. [33] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612. [34] TIMOFTE R. NTIRE2017:New trends in image restoration and enhancement workshop and challenge on image super-resolution in conjunction with CVPR 2017[EB/OL].[2017-03-02]. http://www.vision.ee.ethz.ch/ntire17/. [35] 龙法宁,朱晓姝,胡春娇.基于深层卷积网络的单幅图像超分辨率重建模型[J].广西科学,2017,24(3):231-235.(LONG F L, ZHU X S, HU C J. Single image super-resolution restoration model using deep convolution networks[J]. Guangxi Sciences, 2017, 24(3):231-235.) [36] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[EB/OL].[2018-01-02]. https://www.researchgate.net/publication/260351242_Low-Complexity_Single_Image_Super-Resolution_Based_on_Nonnegative_Neighbor_Embedding. |