[1] GANDOMI A H, ALAVI A H. Krill herd:a new bio-inspired optimization algorithm[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(12):4831-4845 [2] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Piscataway:IEEE, 1995:39-43. [3] DORIGO M, MANIEZZO V, COLORNI A. Ant system:optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B, 1996, 26(1):29-41. [4] KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization:Artificial Bee Colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 39(3):459-471. [5] BOLAJI A L, AL-BETAR M A, AWADALLAH M A, et al. A comprehensive review:Krill Herd algorithm (KH) and its applications[J]. Applied Soft Computing, 2016, 49:437-446. [6] RADOVAN R B, GORAN M, MARINA S B. Modified Krill Herd (MKH) algorithm and its application in dimensional synthesis of a four-bar linkage[J]. Mechanism and Machine Theory, 2016, 95(95):1-21. [7] REN Y-T, QI H, HUANG X, et al. Application of improved krill herd algorithms to inverse radiation problems[J]. International Journal of Thermal Sciences, 2016, 103:24-34. [8] PRASAD S, KUMAR D M V. Optimal allocation of measurement devices for distribution state estimation using multiobjective hybrid PSO-krill herd algorithm[J]. IEEE Transactions on Instrumentation & Measurement, 2017, 66(8):2022-2035. [9] MUKHERJEE A, MUKHERJEE V. Solution of optimal reactive power dispatch by chaotic krill herd algorithm[J]. IET Generation Transmission & Distribution, 2015, 9(15):2351-2362. [10] NIKBAKHT H, MIRVAZIRI H. A new clustering approach based on K-means and krill herd algorithm[C]//Proceedings of the 201523rd Iranian Conference on Electrical Engineering. Piscataway, NJ:IEEE, 2015:662-667. [11] JENSI R, JIJI G W. An improved krill herd algorithm with global exploration capability for solving numerical function optimization problems and its application to data clustering[J]. Applied Soft Computing, 2016, 46:230-245. [12] WANG G-G, GUO L, GANDOMI A H, et al. Chaotic krill herd algorithm[J]. Information Sciences, 2014, 274:17-34. [13] LI J, TANG Y, HUA C, et al. An improved krill herd algorithm:krill herd with linear decreasing step[J]. Applied Mathematics & Computation, 2014, 234:356-367. [14] WANG G-G, DEB S, GANDOMI A H, et al. Opposition-based krill herd algorithm with Cauchy mutation and position clamping[J]. Neurocomputing, 2016, 177:147-157. [15] 姜建国,田旻,王向前,等.采用扰动加速因子的自适应粒子群优化算法[J].西安电子科技大学学报(自然科学版),2012,39(4):74-80. (JIANG J G, TIAN M, WANG X Q, et al. Adaptiveparticle swarm optimization via disturbing acceleration coefficents[J]. Journal of Xidian University (Natural Science), 2012, 39(4):74-80.) [16] 艾兵,董明刚.基于高斯扰动和自然选择的改进粒子群优化算法[J].计算机应用,2016,36(3):687-691. (AI Bing,DONG Minggang. Improved particle swarm optimization algorithm based on Gaussian disturbance and natural selection[J]. Journal of Computer Applications, 2016, 36(3):687-691.) [17] 许世鹏,吴定会,孔飞,等.基于改进鸡群算法的柔性作业车间调度问题求解[J].系统仿真学报,2017,29(7):1497-1505. (XU S P, WU D H, KONG F, et al. Solving flexible job-shop scheduling problem by improved chicken swarm optimization algorithm[J]. Journal of System Simulation, 2017, 29(7):1497-1505.) [18] 陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. (CHEN G M, JIA J Y, HAN Q. Study on the strategy of decreasing inertia weight in particle swarm optimization algorithm[J]. Journal of Xi'an Jiaotong University, 2006, 40(1):53-56.) [19] RAHNAMAYAN S, TIZHOOSH H R, SALAMA M M A. Opposition-based differential evolution[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(1):64-79. [20] WANG H, WU Z, RAHNAMAYAN S. Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems[J]. Soft Computing, 2011, 15(11):2127-2140. [21] WANG H, WU Z, RAHNAMAYAN S, et al. Enhancing particle swarm optimization using generalized opposition-based learning[J]. Information Sciences, 2011, 181(20):4699-4714. [22] YU S, ZHU S, MA Y, et al. Enhancing firefly algorithm using generalized opposition-based learning[J]. Computing, 2015, 97(7):741-754. [23] MAULIK U, BANDYOPADHYAY S. Genetic algorithm-based clustering technique[J]. Pattern Recognition, 2004, 33(9):1455-1465. [24] KAO Y-T, ZAHARA E, KAO I-W. A hybridized approach to data clustering[J]. Expert Systems with Applications, 2008, 34(3):1754-1762. [25] SHELOKAR P S, JAYARAMAN V K, KULKARNI B D. An ant colony approach for clustering[J]. Analytica Chimica Acta, 2004, 509(2):187-195. |