Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (7): 2288-2294.DOI: 10.11772/j.issn.1001-9081.2022060840
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
Anyang LIU1, Huaici ZHAO2, Wenlong CAI1(
), Zechao XU2, Ruideng XIE1
Received:2022-06-10
Revised:2022-08-24
Accepted:2022-08-26
Online:2022-09-22
Published:2023-07-10
Contact:
Wenlong CAI
About author:LIU Anyang, born in 1997, M. S. candidate. His research interests include artificial intelligence, image processing, pattern recognition.Supported by:
刘安阳1, 赵怀慈2, 蔡文龙1(
), 许泽超2, 解瑞灯1
通讯作者:
蔡文龙
作者简介:刘安阳(1997—),男,山东济南人,硕士研究生,主要研究方向:人工智能、图像处理、模式识别;基金资助:CLC Number:
Anyang LIU, Huaici ZHAO, Wenlong CAI, Zechao XU, Ruideng XIE. Adaptive image deblurring generative adversarial network algorithm based on active discrimination mechanism[J]. Journal of Computer Applications, 2023, 43(7): 2288-2294.
刘安阳, 赵怀慈, 蔡文龙, 许泽超, 解瑞灯. 基于主动判别机制的自适应生成对抗网络图像去模糊算法[J]. 《计算机应用》唯一官方网站, 2023, 43(7): 2288-2294.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022060840
| 算法 | GoPro性能测试 | Kohler性能测试 | ||||||
|---|---|---|---|---|---|---|---|---|
| PSNR/dB | SSIM | VIF | AG | PSNR/dB | SSIM | VIF | AG | |
| Nah算法[ | 28.834 | 0.851 | 0.81 | 2.84 | 26.428 | 0.731 | 0.73 | 2.57 |
| DeblurGAN算法[ | 28.707 | 0.885 | 0.77 | 3.56 | 26.363 | 0.752 | 0.62 | 3.14 |
| DeblurGANv2算法[ | 29.061 | 0.889 | 0.85 | 4.03 | 27.272 | 0.788 | 0.73 | 3.63 |
| SRN算法[ | 29.115 | 0.883 | 0.42 | 4.51 | 27.554 | 0.794 | 0.34 | 4.32 |
| MT-RNN算法[ | 29.633 | 0.905 | 0.85 | 3.97 | 28.476 | 0.822 | 0.75 | 3.76 |
| 本文算法 | 29.877 | 0.921 | 0.89 | 5.21 | 28.492 | 0.824 | 0.80 | 4.95 |
Tab. 1 Experimental results of objective comparison
| 算法 | GoPro性能测试 | Kohler性能测试 | ||||||
|---|---|---|---|---|---|---|---|---|
| PSNR/dB | SSIM | VIF | AG | PSNR/dB | SSIM | VIF | AG | |
| Nah算法[ | 28.834 | 0.851 | 0.81 | 2.84 | 26.428 | 0.731 | 0.73 | 2.57 |
| DeblurGAN算法[ | 28.707 | 0.885 | 0.77 | 3.56 | 26.363 | 0.752 | 0.62 | 3.14 |
| DeblurGANv2算法[ | 29.061 | 0.889 | 0.85 | 4.03 | 27.272 | 0.788 | 0.73 | 3.63 |
| SRN算法[ | 29.115 | 0.883 | 0.42 | 4.51 | 27.554 | 0.794 | 0.34 | 4.32 |
| MT-RNN算法[ | 29.633 | 0.905 | 0.85 | 3.97 | 28.476 | 0.822 | 0.75 | 3.76 |
| 本文算法 | 29.877 | 0.921 | 0.89 | 5.21 | 28.492 | 0.824 | 0.80 | 4.95 |
| 算法 | 单幅图像处理时间 | 视频数据处理时间 |
|---|---|---|
| Nah算法[ | 3.02 | 1 817 |
| DeblurGAN算法[ | 0.91 | 547 |
| SRN算法[ | 1.24 | 765 |
| MT-RNN算法[ | 0.32 | 192 |
| 本文算法 | 0.54 | 108 |
Tab. 2 Test results of average running time
| 算法 | 单幅图像处理时间 | 视频数据处理时间 |
|---|---|---|
| Nah算法[ | 3.02 | 1 817 |
| DeblurGAN算法[ | 0.91 | 547 |
| SRN算法[ | 1.24 | 765 |
| MT-RNN算法[ | 0.32 | 192 |
| 本文算法 | 0.54 | 108 |
| 算法结构 | PSNR/dB | SSIM | AG |
|---|---|---|---|
| Base | 27.981 | 0.822 | 3.02 |
| Base+FPN | 28.522 | 0.852 | 3.11 |
| Base+FPN+RAB | 29.523 | 0.877 | 3.31 |
| Base+FPN+RAB+Loss | 29.401 | 0.904 | 4.63 |
| Base+FPN+RAB+Double Discriminator | 29.877 | 0.921 | 5.21 |
Tab. 3 Ablation experimental results
| 算法结构 | PSNR/dB | SSIM | AG |
|---|---|---|---|
| Base | 27.981 | 0.822 | 3.02 |
| Base+FPN | 28.522 | 0.852 | 3.11 |
| Base+FPN+RAB | 29.523 | 0.877 | 3.31 |
| Base+FPN+RAB+Loss | 29.401 | 0.904 | 4.63 |
| Base+FPN+RAB+Double Discriminator | 29.877 | 0.921 | 5.21 |
| Recall和AP指标变化/% | 样本数 | 对照评分 | |
|---|---|---|---|
| GoPro数据集 | 自制数据集 | ||
| 降低(0,5) | 44 | 21 | 0.864 |
| 提升(0,5) | 852 | 224 | 0.722 |
| 提升[5,10) | 755 | 235 | 0.632 |
| 提升10及以上 | 349 | 120 | 0.411 |
Tab. 4 Experimental results of object detection
| Recall和AP指标变化/% | 样本数 | 对照评分 | |
|---|---|---|---|
| GoPro数据集 | 自制数据集 | ||
| 降低(0,5) | 44 | 21 | 0.864 |
| 提升(0,5) | 852 | 224 | 0.722 |
| 提升[5,10) | 755 | 235 | 0.632 |
| 提升10及以上 | 349 | 120 | 0.411 |
| 1 | MITRA S K. 数字信号处理——基于计算机的方法[M]. 余翔宇,译. 4版. 北京:电子工业出版社, 2012:48-52. |
| MITRA S K. Digital Signal Processing: A Computer-Based Approach[M]. YU X Y, translated. 4th ed. Beijing: Publishing House of Electronics Industry, 2012:48-52. | |
| 2 | FERGUS R, SINGH B, HERTZMAN A. Removing camera shake from a single photograph[J]. ACM Transactions on Graphics, 2006, 25(3): 787-794. 10.1145/1141911.1141956 |
| 3 | LI X, ZHENG S C, JIA J Y. Unnatural L0 sparse representation for natural image deblurring [C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013: 1107-1114. 10.1109/cvpr.2013.147 |
| 4 | TAO X, GAO H Y, WANG X Y, et al. Scale-recurrent network for deep image deblurring [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8174-8182. 10.1109/cvpr.2018.00853 |
| 5 | KUPYN O, BUDZAN V, MYKHAILYCH M, et al. DeblurGAN: blind motion deblurring using conditional adversarial networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8183-8192. 10.1109/cvpr.2018.00854 |
| 6 | LI J, JIA J J, XU D L. Unsupervised representation learning of image-based plant disease with deep convolutional generative adversarial networks [C]// Proceedings of the 37th Chinese Control Conference. Piscataway: IEEE, 2018: 9159-9163. 10.23919/chicc.2018.8482813 |
| 7 | 吴迪,赵洪田,郑世宝.密集连接卷积网络图像去模糊[J].中国图象图形学报, 2020, 25(5): 890-899. 10.11834/jig.190400 |
| WU D, ZHAO H T, ZHENG S B. Motion deblurring method based on DenseNets[J]. Journal of Image and Graphics, 2020, 25(5): 890-899. 10.11834/jig.190400 | |
| 8 | 金燕,黄梦佳,姜智伟.基于聚集残差生成对抗网络的图像去模糊[J].计算机辅助设计与图形学学报, 2022, 34(1): 84-93. 10.3724/sp.j.1089.2022.18839 |
| JIN Y, HUANG M J, JIANG Z W. Image deblurring based on aggregate residual adversary networks[J]. Journal of Computer-Aided Design and Graphics, 2022, 34(1): 84-93. 10.3724/sp.j.1089.2022.18839 | |
| 9 | HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 42(8): 2011-2023. |
| 10 | HE K M, ZHENG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
| 11 | LIN T Y, DOLLÁR P, GIESHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. 10.1109/cvpr.2017.106 |
| 12 | LI C, WAND M. Precomputed real-time texture synthesis with Markovian generative adversarial networks [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9907. Cham: Springer, 2016: 702-716. |
| 13 | MAO X, LI Q, XIE H, et al. Least squares generative adversarial networks [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2813-2821. 10.1109/iccv.2017.304 |
| 14 | JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9906. Cham: Springer, 2016: 694-711. |
| 15 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2022-06-01]. . |
| 16 | SUN J, CAO W F, XU Z B, et al. Learning a convolutional neural network for non-uniform motion blur removal [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 769-777. 10.1109/cvpr.2015.7298677 |
| 17 | ZHANG K H, LUO W H, ZHONG Y R, et al. Deblurring by realistic blurring [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2734-2743. 10.1109/cvpr42600.2020.00281 |
| 18 | NAH S, KIM T H, LEE K M. Deep multi-scale convolutional neural network for dynamic scene deblurring [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 257-265. 10.1109/cvpr.2017.35 |
| 19 | PARK D, KANG D U, KIM J, et al. Multi-temporal recurrent neural networks for progressive non-uniform single image deblurring with incremental temporal training [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12351. Cham: Springer, 2020: 327-343. |
| 20 | KUPYN O, MARTYNIUK T, WU J R, et al. DeblurGAN-v2: deblurring (orders-of-magnitude) faster and better [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8877-8886. 10.1109/iccv.2019.00897 |
| [1] | Yuwei DING, Hongbo SHI, Jie LI, Min LIANG. Image denoising network based on local and global feature decoupling [J]. Journal of Computer Applications, 2024, 44(8): 2571-2579. |
| [2] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
| [3] | Haoran WANG, Dan YU, Yuli YANG, Yao MA, Yongle CHEN. Domain transfer intrusion detection method for unknown attacks on industrial control systems [J]. Journal of Computer Applications, 2024, 44(4): 1158-1165. |
| [4] | Yi ZHENG, Cunyi LIAO, Tianqian ZHANG, Ji WANG, Shouyin LIU. Image denoising-based cell-level RSRP estimation method for urban areas [J]. Journal of Computer Applications, 2024, 44(3): 855-862. |
| [5] | Ruifeng HOU, Pengcheng ZHANG, Liyuan ZHANG, Zhiguo GUI, Yi LIU, Haowen ZHANG, Shubin WANG. Iterative denoising network based on total variation regular term expansion [J]. Journal of Computer Applications, 2024, 44(3): 916-921. |
| [6] | Sunjie YU, Hui ZENG, Shiyu XIONG, Hongzhou SHI. Incentive mechanism for federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(2): 344-352. |
| [7] | Pengbo WANG, Wuyang SHAN, Jun LI, Mao TIAN, Deng ZOU, Zhanfeng FAN. Robust splicing forensic algorithm against high-intensity salt-and-pepper noise [J]. Journal of Computer Applications, 2024, 44(10): 3177-3184. |
| [8] | Hui ZHOU, Yuling CHEN, Xuewei WANG, Yangwen ZHANG, Jianjiang HE. Deep shadow defense scheme of federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(1): 223-232. |
| [9] | Shaoquan CHEN, Jianping CAI, Lan SUN. Differential privacy generative adversarial network algorithm with dynamic gradient threshold clipping [J]. Journal of Computer Applications, 2023, 43(7): 2065-2072. |
| [10] | Xin JIN, Yangchuan LIU, Yechen ZHU, Zijian ZHANG, Xin GAO. Sinogram inpainting for sparse-view cone-beam computed tomography image reconstruction based on residual encoder-decoder generative adversarial network [J]. Journal of Computer Applications, 2023, 43(6): 1950-1957. |
| [11] | Jiagao WU, Shiwen ZHANG, Yudong JIANG, Linfeng LIU. Social-interaction GAN for pedestrian trajectory prediction based on state-refinement long short-term memory and attention mechanism [J]. Journal of Computer Applications, 2023, 43(5): 1565-1570. |
| [12] | Jinwen GUO, Xinghua MA, Gongning LUO, Wei WANG, Yang CAO, Kuanquan WANG. Guidewire artifact removal method of structure-enhanced IVOCT based on Transformer [J]. Journal of Computer Applications, 2023, 43(5): 1596-1605. |
| [13] | Hao WANG, Zicheng WANG, Chao ZHANG, Yunsheng MA. Generative adversarial network based data uncertainty quantification method [J]. Journal of Computer Applications, 2023, 43(4): 1094-1101. |
| [14] | Xiaoyu FAN, Suzhen LIN, Yanbo WANG, Feng LIU, Dawei LI. Reconstruction algorithm for highly undersampled magnetic resonance images based on residual graph convolutional neural network [J]. Journal of Computer Applications, 2023, 43(4): 1261-1268. |
| [15] | Chunyong YIN, Liwen ZHOU. Unsupervised time series anomaly detection model based on re-encoding [J]. Journal of Computer Applications, 2023, 43(3): 804-811. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||