Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (1): 337-344.DOI: 10.11772/j.issn.1001-9081.2024010066
• Frontier and comprehensive applications • Previous Articles
Zijun MIAO, Fei LUO(), Weichao DING, Wenbo DONG
Received:
2024-01-19
Revised:
2024-03-15
Accepted:
2024-03-25
Online:
2024-05-09
Published:
2025-01-10
Contact:
Fei LUO
About author:
MIAO Zijun, born in 1999, M. S. candidate. His research interests include reinforcement learning.Supported by:
通讯作者:
罗飞
作者简介:
缪孜珺(1999—),男,浙江宁波人,硕士研究生,主要研究方向:强化学习;基金资助:
CLC Number:
Zijun MIAO, Fei LUO, Weichao DING, Wenbo DONG. Traffic signal control algorithm based on overall state prediction and fair experience replay[J]. Journal of Computer Applications, 2025, 45(1): 337-344.
缪孜珺, 罗飞, 丁炜超, 董文波. 基于全局状态预测与公平经验重放的交通信号控制算法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 337-344.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024010066
算法 | 超参数 | 值 | 含义 |
---|---|---|---|
FixTime | 80 | 相位周期 | |
MaxPressure | 5 | 最小绿灯时间 | |
SOTL | 2 | 最小绿灯时间 | |
4 | 车辆数阈值 | ||
28 | 绿灯车辆数阈值 |
Tab. 1 Hyperparameter setting of classical algorithms
算法 | 超参数 | 值 | 含义 |
---|---|---|---|
FixTime | 80 | 相位周期 | |
MaxPressure | 5 | 最小绿灯时间 | |
SOTL | 2 | 最小绿灯时间 | |
4 | 车辆数阈值 | ||
28 | 绿灯车辆数阈值 |
交通压力 | 路口编号 | IS-DQN | DQN | DQN-PS | DQN-ER | FixTime | MaxPressure | SOTL |
---|---|---|---|---|---|---|---|---|
低流量 | 路口1 | 92.520 | 103.638 | 93.750 | 98.904 | 285.387 | 143.212 | 148.432 |
路口2 | 85.072 | 93.101 | 85.771 | 89.633 | 279.508 | 126.871 | 128.802 | |
路口3 | 73.975 | 83.960 | 74.444 | 82.593 | 272.065 | 109.183 | 109.260 | |
路口4 | 94.085 | 99.426 | 94.440 | 98.913 | 400.112 | 152.070 | 162.543 | |
路口5 | 95.291 | 99.374 | 94.877 | 96.614 | 349.340 | 140.418 | 149.679 | |
路口6 | 74.085 | 81.204 | 74.266 | 80.416 | 345.519 | 118.796 | 146.500 | |
中流量 | 路口1 | 112.058 | 121.691 | 114.467 | 117.215 | 244.768 | 156.211 | 163.154 |
路口2 | 106.165 | 116.094 | 108.171 | 109.196 | 216.307 | 141.574 | 153.677 | |
路口3 | 85.988 | 94.483 | 88.368 | 96.213 | 225.756 | 117.185 | 165.453 | |
路口4 | 124.960 | 141.970 | 126.198 | 135.349 | 289.689 | 171.429 | 204.084 | |
路口5 | 108.599 | 113.521 | 110.960 | 115.294 | 286.784 | 143.639 | 178.838 | |
路口6 | 91.078 | 107.781 | 92.318 | 100.988 | 258.487 | 135.075 | 206.624 | |
高流量 | 路口1 | 129.778 | 128.808 | 127.764 | 131.759 | 276.707 | 166.963 | 146.500 |
路口2 | 125.551 | 123.464 | 124.294 | 131.589 | 208.357 | 149.933 | 162.850 | |
路口3 | 107.029 | 109.390 | 114.653 | 114.301 | 201.837 | 124.199 | 173.341 | |
路口4 | 164.431 | 161.762 | 161.873 | 166.006 | 336.926 | 188.821 | 200.651 | |
路口5 | 118.135 | 117.691 | 121.091 | 121.621 | 388.053 | 148.797 | 163.518 | |
路口6 | 130.814 | 141.184 | 130.136 | 133.617 | 242.165 | 145.862 | 197.414 |
Tab. 2 Average driving time optimized by different algorithms under different traffic pressure
交通压力 | 路口编号 | IS-DQN | DQN | DQN-PS | DQN-ER | FixTime | MaxPressure | SOTL |
---|---|---|---|---|---|---|---|---|
低流量 | 路口1 | 92.520 | 103.638 | 93.750 | 98.904 | 285.387 | 143.212 | 148.432 |
路口2 | 85.072 | 93.101 | 85.771 | 89.633 | 279.508 | 126.871 | 128.802 | |
路口3 | 73.975 | 83.960 | 74.444 | 82.593 | 272.065 | 109.183 | 109.260 | |
路口4 | 94.085 | 99.426 | 94.440 | 98.913 | 400.112 | 152.070 | 162.543 | |
路口5 | 95.291 | 99.374 | 94.877 | 96.614 | 349.340 | 140.418 | 149.679 | |
路口6 | 74.085 | 81.204 | 74.266 | 80.416 | 345.519 | 118.796 | 146.500 | |
中流量 | 路口1 | 112.058 | 121.691 | 114.467 | 117.215 | 244.768 | 156.211 | 163.154 |
路口2 | 106.165 | 116.094 | 108.171 | 109.196 | 216.307 | 141.574 | 153.677 | |
路口3 | 85.988 | 94.483 | 88.368 | 96.213 | 225.756 | 117.185 | 165.453 | |
路口4 | 124.960 | 141.970 | 126.198 | 135.349 | 289.689 | 171.429 | 204.084 | |
路口5 | 108.599 | 113.521 | 110.960 | 115.294 | 286.784 | 143.639 | 178.838 | |
路口6 | 91.078 | 107.781 | 92.318 | 100.988 | 258.487 | 135.075 | 206.624 | |
高流量 | 路口1 | 129.778 | 128.808 | 127.764 | 131.759 | 276.707 | 166.963 | 146.500 |
路口2 | 125.551 | 123.464 | 124.294 | 131.589 | 208.357 | 149.933 | 162.850 | |
路口3 | 107.029 | 109.390 | 114.653 | 114.301 | 201.837 | 124.199 | 173.341 | |
路口4 | 164.431 | 161.762 | 161.873 | 166.006 | 336.926 | 188.821 | 200.651 | |
路口5 | 118.135 | 117.691 | 121.091 | 121.621 | 388.053 | 148.797 | 163.518 | |
路口6 | 130.814 | 141.184 | 130.136 | 133.617 | 242.165 | 145.862 | 197.414 |
1 | KŐVÁRI B, KOLAT M, BÉCSI T, et al. Competitive multi-agent reinforcement learning for traffic signal control [C]// Proceedings of the IEEE 20th Jubilee International Symposium on Intelligent Systems and Informatics. Piscataway: IEEE, 2022: 361-366. |
2 | NOAEEM M, NAIK A, GOODMAN L, et al. Reinforcement learning in urban network traffic signal control: a systematic literature review [J]. Expert Systems with Applications, 2022, 199: No.116830. |
3 | MA D, XIAO J, SONG X, et al. A back-pressure-based model with fixed phase sequences for traffic signal optimization under oversaturated networks [J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(9): 5577-5588. |
4 | DUCROCQ R, FARHI N. Deep reinforcement Q-learning for intelligent traffic signal control with partial detection [J]. International Journal of Intelligent Transportation Systems Research, 2023, 21(1): 192-206. |
5 | HAN G, LIU X, WANG H, et al. An attention reinforcement learning-based strategy for large-scale adaptive traffic signal control system [J]. Journal of Transportation Engineering, Part A: Systems, 2024, 150(3): No.04024001. |
6 | YAZDANI M, SARVI M, BAGLOEE S A, et al. Intelligent Vehicle Pedestrian Light (IVPL): a deep reinforcement learning approach for traffic signal control [J]. Transportation Research Part C: Emerging Technologies, 2023, 149: No.103991. |
7 | ZHU R, LI L, WU S, et al. Multi-agent broad reinforcement learning for intelligent traffic light control [J]. Information Sciences, 2023, 619: 509-525. |
8 | KOLAT M, KŐVÁRI B, BÉCSI T, et al. Multi-agent reinforcement learning for traffic signal control: a cooperative approach [J]. Sustainability, 2023, 15(4): No.3479. |
9 | ZHANG K, YANG Z, BAŞAR T. Multi-agent reinforcement learning: a selective overview of theories and algorithms [M]// VAMVOUDAKIS K G, WAN Y, LEWIS F L, et al. Handbook of reinforcement learning and control, SSDC 325. Cham: Springer, 2021: 321-384. |
10 | YANG S. Hierarchical graph multi-agent reinforcement learning for traffic signal control [J]. Information Sciences, 2023, 634: 55-72. |
11 | YANG S, YANG B. An inductive heterogeneous graph attention-based multi-agent deep graph infomax algorithm for adaptive traffic signal control [J]. Information Fusion, 2022, 88: 249-262. |
12 | ZHAO Z, WANG K, WANG Y, et al. Enhancing traffic signal control with composite deep intelligence [J]. Expert Systems with Applications, 2024, 244: No.123020. |
13 | GUO J, CHENG L, WANG S. CoTV: cooperative control for traffic light signals and connected autonomous vehicles using deep reinforcement learning [J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(10): 10501-10512. |
14 | REN F, DONG W, ZHAO X, et al. Two-layer coordinated reinforcement learning for traffic signal control in traffic network [J]. Expert Systems with Applications, 2024, 235: No.121111. |
15 | BOKADE R, JIN X, AMATO C. Multi-agent reinforcement learning based on representational communication for large-scale traffic signal control [J]. IEEE Access, 2023, 11: 47646-47658. |
16 | FANG J, YOU Y, XU M, et al. Multi-objective traffic signal control using network-wide agent coordinated reinforcement learning [J]. Expert Systems with Applications, 2023, 229(Pt A): No.120535. |
17 | STONE P, KAMINKA G A, KRAUS S, et al. Ad hoc autonomous agent teams: collaboration without pre-coordination [C]// Proceedings of the 24th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2010: 1504-1509. |
18 | GMYTRASIEWICZ P J, DOSHI P. A framework for sequential planning in multi-agent settings [J]. Journal of Artificial Intelligence Research, 2005, 24: 49-79. |
19 | HERNANDEZ-LEAL P, KAISERS M, BAARSLAG T, et al. A survey of learning in multiagent environments: dealing with non-stationarity [EB/OL]. [2023-08-10]. . |
20 | SCHAUL T, QUAN J, ANTONOGLOU I, et al. Prioritized experience replay [EB/OL]. [2023-08-03]. . |
21 | TESAURO G. Extending Q-learning to general adaptive multi-agent systems [C]// Proceedings of the 16th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2003: 871-878. |
22 | ABBASIMEHR H, PAKI R. Improving time series forecasting using LSTM and attention models [J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(1): 673-691. |
23 | TANG Z, NAPHADE M, LIU M Y, et al. CityFlow: a city-scale benchmark for multi-target multi-camera vehicle tracking and re-identification [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 8789-8798. |
24 | ZHENG G, XIONG Y, ZANG X, et al. Learning phase competition for traffic signal control [C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 1963-1972. |
25 | COOLS S B, GERSHENSON C, D’HOOGHE B. Self-organizing traffic lights: a realistic simulation [M]// PROKOPENKO M. Advances in applied self-organizing systems, AI&KP. London: Springer, 2013: 45-55. |
26 | LEVIN M W. Max-Pressure traffic signal timing: a summary of methodological and experimental results [J]. Journal of Transportation Engineering, Part A: Systems, 2023, 149(4): No.7578. |
[1] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[2] | Yi ZHOU, Hua GAO, Yongshen TIAN. Proximal policy optimization algorithm based on clipping optimization and policy guidance [J]. Journal of Computer Applications, 2024, 44(8): 2334-2341. |
[3] | Tian MA, Runtao XI, Jiahao LYU, Yijie ZENG, Jiayi YANG, Jiehui ZHANG. Mobile robot 3D space path planning method based on deep reinforcement learning [J]. Journal of Computer Applications, 2024, 44(7): 2055-2064. |
[4] | Runze TIAN, Yulong ZHOU, Hong ZHU, Gang XUE. Local information based path selection algorithm for service migration [J]. Journal of Computer Applications, 2024, 44(7): 2168-2174. |
[5] | Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model [J]. Journal of Computer Applications, 2024, 44(6): 1824-1831. |
[6] | Xiaoyan ZHAO, Wei HAN, Junna ZHANG, Peiyan YUAN. Collaborative offloading strategy in internet of vehicles based on asynchronous deep reinforcement learning [J]. Journal of Computer Applications, 2024, 44(5): 1501-1510. |
[7] | Rui TANG, Chuanlin PANG, Ruizhi ZHANG, Chuan LIU, Shibo YUE. DDPG-based resource allocation in D2D communication-empowered cellular network [J]. Journal of Computer Applications, 2024, 44(5): 1562-1569. |
[8] | Xintong QIN, Zhengyu SONG, Tianwei HOU, Feiyue WANG, Xin SUN, Wei LI. Channel access and resource allocation algorithm for adaptive p-persistent mobile ad hoc network [J]. Journal of Computer Applications, 2024, 44(3): 863-868. |
[9] | Fuqin DENG, Huifeng GUAN, Chaoen TAN, Lanhui FU, Hongmin WANG, Tinlun LAM, Jianmin ZHANG. Multi-robot reinforcement learning path planning method based on request-response communication mechanism and local attention mechanism [J]. Journal of Computer Applications, 2024, 44(2): 432-438. |
[10] | Yuanchao LI, Chongben TAO, Chen WANG. Gait control method based on maximum entropy deep reinforcement learning for biped robot [J]. Journal of Computer Applications, 2024, 44(2): 445-451. |
[11] | Jiachen YU, Ye YANG. Irregular object grasping by soft robotic arm based on clipped proximal policy optimization algorithm [J]. Journal of Computer Applications, 2024, 44(11): 3629-3638. |
[12] | Yu ZENG, Yang ZHANG, Shang ZENG, Maoli FU, Qixue HE, Linlong ZENG. Time series prediction algorithm based on multi-scale gated dilated convolutional network [J]. Journal of Computer Applications, 2024, 44(11): 3427-3434. |
[13] | Xiaoyu HUA, Dongfen LI, You FU, Kejun BI, Shi YING, Ruijin WANG. Industrial chain risk assessment and early warning model combining hierarchical graph neural network and long short-term memory [J]. Journal of Computer Applications, 2024, 44(10): 3223-3231. |
[14] | Hanxiao SHI, Leichun WANG. Short-term power load forecasting by graph convolutional network combining LSTM and self-attention mechanism [J]. Journal of Computer Applications, 2024, 44(1): 311-317. |
[15] | Zhiping ZHU, Yan YANG, Jie WANG. Scene graph-aware cross-modal image captioning model [J]. Journal of Computer Applications, 2024, 44(1): 58-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||