Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (8): 2428-2436.DOI: 10.11772/j.issn.1001-9081.2024081101
• National Open Distributed and Parallel Computing Conference 2024 (DPCS 2024) • Previous Articles
Shuo ZHANG, Guokai SUN, Yuan ZHUANG(), Xiaoyu FENG, Jingzhi WANG
Received:
2024-08-07
Revised:
2024-10-21
Accepted:
2024-11-07
Online:
2024-11-25
Published:
2025-08-10
Contact:
Yuan ZHUANG
About author:
ZHANG Shuo, born in 1999, Ph. D. candidate. His research interests include blockchain security, deep learning.Supported by:
通讯作者:
庄园
作者简介:
张硕(1999—),男,山东济南人,博士研究生,主要研究方向:区块链安全、深度学习基金资助:
CLC Number:
Shuo ZHANG, Guokai SUN, Yuan ZHUANG, Xiaoyu FENG, Jingzhi WANG. Dynamic detection method of eclipse attacks for blockchain node analysis[J]. Journal of Computer Applications, 2025, 45(8): 2428-2436.
张硕, 孙国凯, 庄园, 冯小雨, 王敬之. 面向区块链节点分析的eclipse攻击动态检测方法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2428-2436.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024081101
特征 | 重要程度 | 对值得信任程度的影响 |
---|---|---|
共享区块 | 低 | 数量越多越值得信任 |
交易频率 | 较高 | 数量越多越值得信任 |
共识参与 | 一般 | 存在则值得信任程度高 |
所属关系 | 高 | 存在则十分值得信任 |
Tab. 1 Description of node trust relationship features
特征 | 重要程度 | 对值得信任程度的影响 |
---|---|---|
共享区块 | 低 | 数量越多越值得信任 |
交易频率 | 较高 | 数量越多越值得信任 |
共识参与 | 一般 | 存在则值得信任程度高 |
所属关系 | 高 | 存在则十分值得信任 |
移除特征 | 准确率 | 精确率 | 召回率 | F1-score |
---|---|---|---|---|
0.752 | 0.923 | 0.752 | 0.829 | |
0.703 | 0.903 | 0.703 | 0.791 | |
0.779 | 0.932 | 0.780 | 0.849 | |
0.756 | 0.925 | 0.756 | 0.832 | |
0.734 | 0.915 | 0.735 | 0.815 | |
0.718 | 0.909 | 0.718 | 0.803 | |
KS | 0.664 | 0.886 | 0.665 | 0.760 |
0.704 | 0.903 | 0.705 | 0.792 | |
0.623 | 0.867 | 0.623 | 0.725 | |
0.723 | 0.911 | 0.723 | 0.807 |
Tab. 2 Model performance after removing different node features
移除特征 | 准确率 | 精确率 | 召回率 | F1-score |
---|---|---|---|---|
0.752 | 0.923 | 0.752 | 0.829 | |
0.703 | 0.903 | 0.703 | 0.791 | |
0.779 | 0.932 | 0.780 | 0.849 | |
0.756 | 0.925 | 0.756 | 0.832 | |
0.734 | 0.915 | 0.735 | 0.815 | |
0.718 | 0.909 | 0.718 | 0.803 | |
KS | 0.664 | 0.886 | 0.665 | 0.760 |
0.704 | 0.903 | 0.705 | 0.792 | |
0.623 | 0.867 | 0.623 | 0.725 | |
0.723 | 0.911 | 0.723 | 0.807 |
[1] | NAKAMOTO S. Bitcoin: a peer-to-peer electronic cash system[EB/OL]. [2024-06-05].. |
[2] | UNDERWOOD S. Blockchain beyond bitcoin[J]. Communications of the ACM, 2016, 59(11): 15-17. |
[3] | YUAN Y, WANG F Y. Blockchain and cryptocurrencies: model, techniques, and applications[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(9): 1421-1428. |
[4] | ZHAO J L, FAN S, YAN J. Overview of business innovations and research opportunities in blockchain and introduction to the special issue[J]. Financial Innovation, 2016, 2: No.28. |
[5] | HEILMAN E, KENDLER A, ZOHAR A, et al. Eclipse attacks on bitcoin’s peer-to-peer network[C]// Proceedings of the 24th USENIX Security Symposium. Berkeley: USENIX Association, 2015: 129-144. |
[6] | ATZEI N, BARTOLETTI M, CIMOLI T. A survey of attacks on Ethereum smart contracts (SoK)[C]// Proceedings of the 2017 International Conference on Principles of Security and Trust, LNCS 10204. Berlin: Springer, 2017: 164-186. |
[7] | MUFLEH A. Bitcoin eclipse attack — statistic analysis on selfish mining and double-spending attack/submitted[D/OL]. [2024-06-05].. |
[8] | LIU Y, HEI Y, XU T, et al. An evaluation of uncle block mechanism effect on Ethereum selfish and stubborn mining combined with an eclipse attack[J]. IEEE Access, 2020, 8: 17489-17499. |
[9] | FEIST J, GRIECO G, GROCE A. Slither: a static analysis framework for smart contracts[C]// Proceedings of the IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain. Piscataway: IEEE, 2019: 8-15. |
[10] | ZHENG Z, XIE S, DAI H, et al. An overview of blockchain technology: architecture, consensus, and future trends[C]// Proceedings of the 2017 IEEE International Congress on Big Data. Piscataway: IEEE, 2017: 557-564. |
[11] | LeCUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. |
[12] | WU Z, PAN S, CHEN F, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. |
[13] | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. [2024-06-05].. |
[14] | ALANGOT B, REIJSBERGEN D, VENUGOPALAN S, et al. Decentralized and lightweight approach to detect eclipse attacks on proof of work blockchains[J]. IEEE Transactions on Network and Service Management, 2021, 18(2): 1659-1672. |
[15] | URDANETA G, PIERRE G, VAN STEEN M. A survey of DHT security techniques[J]. ACM Computing Surveys, 2011, 43(2): No.8. |
[16] | CASTRO M, DRUSCHEL P, GANESH A, et al. Secure routing for structured peer-to-peer overlay networks[J]. ACM SIGOPS Operating Systems Review, 2002, 36(SI): 299-314. |
[17] | SIT E, MORRIS R. Security considerations for peer-to-peer distributed hash tables[C]// Proceedings of the 2002 International Workshop on Peer-to-Peer Systems, LNCS 2429. Berlin: Springer, 2002: 261-269. |
[18] | SINGH A, NGAN T W, DRUSCHEL P, et al. Eclipse attacks on overlay networks: threats and defenses[C]// Proceedings of the 25th IEEE International Conference on Computer Communications. Piscataway: IEEE, 2006: 1-12. |
[19] | APOSTOLAKI M, ZOHAR A, VANBEVER L. Hijacking bitcoin: routing attacks on cryptocurrencies[C]// Proceedings of the 2017 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2017: 375-392. |
[20] | BIRYUKOV A, PUSTOGAROV I. Bitcoin over Tor isn’t a good idea[C]// Proceedings of the 2015 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2015: 122-134. |
[21] | WÜST K, GERVAIS A. Ethereum eclipse attacks[EB/OL]. [2024-06-05].. |
[22] | MARCUS Y, HEILMAN E, GOLDBERG S. Low-resource eclipse attacks on Ethereum’s peer-to-peer network[EB/OL]. [2024-06-05].. |
[23] | HENNINGSEN S, TEUNIS D, FLORIAN M, et al. Eclipsing Ethereum peers with false friends[EB/OL]. [2024-06-05].. |
[24] | TRAN M, CHOI I, MOON G J, et al. A stealthier partitioning attack against bitcoin peer-to-peer network[C]// Proceedings of the 2020 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2020: 894-909. |
[25] | 卫孜钻,王鑫,于丹,等. 面向POW共识的日蚀攻击动态防御机制[J]. 计算机工程与应用, 2023, 59(8): 280-287. |
WEI Z Z, WANG X, YU D, et al. Defense mechanism to solve eclipse attack of POW consensus[J]. Computer Engineering and Applications, 2023, 59(8) : 280-287. | |
[26] | ROTTONDI C, PANZERI A, YAGNE C T, et al. Detection and mitigation of the eclipse attack in chord overlays[J]. International Journal of Computational Science and Engineering, 2016, 13(2): 111-121. |
[27] | FANTACCI R, MACCARI L, ROSI M, et al. Avoiding eclipse attacks on Kad/Kademlia: an identity based approach[C]// Proceedings of the 2009 IEEE International Conference on Communications. Piscataway: IEEE, 2009: 1-5. |
[28] | TRAN M, SHENOI A, KANG M S. On the routing-aware peering against network-eclipse attacks in bitcoin[C]// Proceedings of the 30th USENIX Security Symposium. Berkeley: USENIX Association, 2021: 1253-1270. |
[29] | CHICARINO V, ALBUQUERQUE C, JESUS E, et al. On the detection of selfish mining and stalker attacks in blockchain networks[J]. Annals of Telecommunications, 2020, 75(3/4): 143-152. |
[30] | ISMAIL H, GERMANUS D, SURI N. Detecting and mitigating P2P eclipse attacks[C]// Proceedings of the IEEE 21st International Conference on Parallel and Distributed Systems. Piscataway: IEEE, 2015: 224-231. |
[31] | XU G, GUO B, SU C, et al. Am I eclipsed? a smart detector of eclipse attacks for Ethereum[J]. Computers and Security, 2020, 88: No.101604. |
[32] | 吕婧淑,杨培,陈文,等. 基于免疫的区块链eclipse攻击的异常检测[J]. 计算机科学, 2018, 45(2): 8-14. |
LYU J S, YANG P, CHEN W, et al. Abnormal detection of eclipse attacks on blockchain based on immunity[J]. Computer Science, 2018, 45(2): 8-14. | |
[33] | DAI Q, ZHANG B, DONG S. Eclipse attack detection for blockchain network layer based on deep feature extraction[J]. Wireless Communications and Mobile Computing, 2022, 2022: No.1451813. |
[34] | DECKER C, WATTENHOFER R. Information propagation in the bitcoin network[C]// Proceedings of the 13th IEEE International Conference on Peer-to-Peer Computing. Piscataway: IEEE, 2013: 1-10. |
[35] | CVE-2013- 5700: remote P2P crash via bloom filters[EB/OL]. [2024-06-05].. |
[36] | 哈尔滨工程大学. 基于节点评估和动态更新的区块链网络脆弱性检测方法及系统: 202311355453.1[P]. 2024-01-16. |
Harbin Engineering University. Vulnerability detection method and system of blockchain network based on node evaluation and dynamic update: 202311355453.1[P]. 2024-01-16. |
[1] | Lina GE, Mingyu WANG, Lei TIAN. Review of research on efficiency of federated learning [J]. Journal of Computer Applications, 2025, 45(8): 2387-2398. |
[2] | Jinxian SUO, Liping ZHANG, Sheng YAN, Dongqi WANG, Yawen ZHANG. Review of interpretable deep knowledge tracing methods [J]. Journal of Computer Applications, 2025, 45(7): 2043-2055. |
[3] | Zhenzhou WANG, Fangfang GUO, Jingfang SU, He SU, Jianchao WANG. Robustness optimization method of visual model for intelligent inspection [J]. Journal of Computer Applications, 2025, 45(7): 2361-2368. |
[4] | Qiaoling QI, Xiaoxiao WANG, Qianqian ZHANG, Peng WANG, Yongfeng DONG. Label noise adaptive learning algorithm based on meta-learning [J]. Journal of Computer Applications, 2025, 45(7): 2113-2122. |
[5] | Xiaoyang ZHAO, Xinzheng XU, Zhongnian LI. Research review on explainable artificial intelligence in internet of things applications [J]. Journal of Computer Applications, 2025, 45(7): 2169-2179. |
[6] | Lanhao LI, Haojun YAN, Haoyi ZHOU, Qingyun SUN, Jianxin LI. Multi-scale information fusion time series long-term forecasting model based on neural network [J]. Journal of Computer Applications, 2025, 45(6): 1776-1783. |
[7] | Tianchen HUA, Xiaoning MA, Hui ZHI. Portable executable malware static detection model based on shallow artificial neural network [J]. Journal of Computer Applications, 2025, 45(6): 1911-1921. |
[8] | Sijie NIU, Yuliang LIU. Auxiliary diagnostic method for retinopathy based on dual-branch structure with knowledge distillation [J]. Journal of Computer Applications, 2025, 45(5): 1410-1414. |
[9] | Dan WANG, Wenhao ZHANG, Lijuan PENG. Channel estimation of reconfigurable intelligent surface assisted communication system based on deep learning [J]. Journal of Computer Applications, 2025, 45(5): 1613-1618. |
[10] | Wenpeng WANG, Yinchang QIN, Wenxuan SHI. Review of unsupervised deep learning methods for industrial defect detection [J]. Journal of Computer Applications, 2025, 45(5): 1658-1670. |
[11] | Xueying LI, Kun YANG, Guoqing TU, Shubo LIU. Adversarial sample generation method for time-series data based on local augmentation [J]. Journal of Computer Applications, 2025, 45(5): 1573-1581. |
[12] | Kai CHEN, Hailiang YE, Feilong CAO. Classification algorithm for point cloud based on local-global interaction and structural Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1671-1676. |
[13] | Yang ZHOU, Hui LI. Remote sensing image building extraction network based on dual promotion of semantic and detailed features [J]. Journal of Computer Applications, 2025, 45(4): 1310-1316. |
[14] | Lihu PAN, Shouxin PENG, Rui ZHANG, Zhiyang XUE, Xuzhen MAO. Video anomaly detection for moving foreground regions [J]. Journal of Computer Applications, 2025, 45(4): 1300-1309. |
[15] | Yiding WANG, Zehao WANG, Yaoli LI, Shaoqing CAI, Yuan YUAN. Multi-scale 2D-Adaboost microscopic image recognition algorithm of Chinese medicinal materials powder [J]. Journal of Computer Applications, 2025, 45(4): 1325-1332. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||