Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (10): 3252-3258.DOI: 10.11772/j.issn.1001-9081.2024101523
• Cyber security • Previous Articles
You SHANG1,2, Xianghua MIAO1()
Received:
2024-10-23
Revised:
2025-02-11
Accepted:
2025-02-17
Online:
2025-02-27
Published:
2025-10-10
Contact:
Xianghua MIAO
About author:
Shang you, born in 1998, M. S. candidate. Her research interests include information security, machine learning.Supported by:
通讯作者:
缪祥华
作者简介:
尚游(1998—),女,云南曲靖人,硕士研究生,CCF会员,主要研究方向:信息安全、机器学习基金资助:
CLC Number:
You SHANG, Xianghua MIAO. Bayesian membership inference attacks for generative adversarial networks[J]. Journal of Computer Applications, 2025, 45(10): 3252-3258.
尚游, 缪祥华. 面向生成式对抗网络的贝叶斯成员推理攻击[J]. 《计算机应用》唯一官方网站, 2025, 45(10): 3252-3258.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024101523
符号 | 表达式 | 含义 |
---|---|---|
/ | 目标样本 | |
/ | 预测结果,成员取1,非成员取0 | |
各网络层的权重参数 | ||
生成器中的n个数据点 | ||
/ | 均值 | |
/ | 协方差矩阵 | |
控制分布 | ||
/ | 证据下限常数 |
Tab. 1 Symbol explanations
符号 | 表达式 | 含义 |
---|---|---|
/ | 目标样本 | |
/ | 预测结果,成员取1,非成员取0 | |
各网络层的权重参数 | ||
生成器中的n个数据点 | ||
/ | 均值 | |
/ | 协方差矩阵 | |
控制分布 | ||
/ | 证据下限常数 |
模型 | CIFAR10 | Fashion-MNIST | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
DCGAN | InfoGAN | WGAN | PIGAN | RS-DPGAN | DCGAN | InfoGAN | WGAN | PIGAN | RS-DPGAN | |
黑盒1[ | 0.576 | 0.514 | 0.492 | 0.493 | 0.466 | 0.628 | 0.517 | 0.500 | 0.436 | 0.451 |
黑盒2[ | 0.566 | 0.509 | 0.498 | 0.510 | 0.506 | 0.616 | 0.518 | 0.516 | 0.435 | 0.514 |
黑盒3[ | 0.561 | 0.530 | 0.479 | 0.517 | 0.502 | 0.633 | 0.545 | 0.507 | 0.481 | 0.509 |
GAN-Leaks[ | 0.618 | 0.530 | 0.501 | 0.531 | 0.492 | 0.621 | 0.536 | 0.512 | 0.530 | 0.505 |
蒙特卡罗[ | 0.667 | 0.544 | 0.505 | 0.522 | 0.519 | 0.636 | 0.543 | 0.517 | 0.551 | 0.534 |
GBMIA[ | 0.649 | 0.600 | 0.597 | 0.506 | 0.501 | 0.655 | 0.612 | 0.608 | 0.517 | 0.517 |
本文模型(n=50) | 0.712 | 0.638 | 0.709 | 0.635 | 0.614 | 0.749 | 0.651 | 0.709 | 0.614 | 0.608 |
模型 | ILSVRC2012 | 花卉识别 | ||||||||
DCGAN | InfoGAN | WGAN | PIGAN | RS-DPGAN | DCGAN | InfoGAN | WGAN | PIGAN | RS-DPGAN | |
黑盒1[ | 0.637 | 0.529 | 0.503 | 0.419 | 0.436 | 0.624 | 0.530 | 0.540 | 0.429 | 0.442 |
黑盒2[ | 0.631 | 0.566 | 0.511 | 0.423 | 0.478 | 0.622 | 0.546 | 0.543 | 0.419 | 0.504 |
黑盒3[ | 0.639 | 0.572 | 0.521 | 0.531 | 0.550 | 0.640 | 0.555 | 0.551 | 0.477 | 0.518 |
GAN-Leaks[ | 0.639 | 0.577 | 0.520 | 0.519 | 0.521 | 0.638 | 0.579 | 0.548 | 0.468 | 0.510 |
蒙特卡罗[ | 0.644 | 0.594 | 0.577 | 0.545 | 0.611 | 0.646 | 0.601 | 0.605 | 0.551 | 0.543 |
GBMIA[ | 0.657 | 0.608 | 0.600 | 0.547 | 0.630 | 0.655 | 0.603 | 0.594 | 0.548 | 0.540 |
本文模型(n=50) | 0.740 | 0.602 | 0.730 | 0.622 | 0.619 | 0.737 | 0.661 | 0.711 | 0.632 | 0.622 |
Tab. 2 Average attack success rates of seven types of MIAs under five GANs
模型 | CIFAR10 | Fashion-MNIST | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
DCGAN | InfoGAN | WGAN | PIGAN | RS-DPGAN | DCGAN | InfoGAN | WGAN | PIGAN | RS-DPGAN | |
黑盒1[ | 0.576 | 0.514 | 0.492 | 0.493 | 0.466 | 0.628 | 0.517 | 0.500 | 0.436 | 0.451 |
黑盒2[ | 0.566 | 0.509 | 0.498 | 0.510 | 0.506 | 0.616 | 0.518 | 0.516 | 0.435 | 0.514 |
黑盒3[ | 0.561 | 0.530 | 0.479 | 0.517 | 0.502 | 0.633 | 0.545 | 0.507 | 0.481 | 0.509 |
GAN-Leaks[ | 0.618 | 0.530 | 0.501 | 0.531 | 0.492 | 0.621 | 0.536 | 0.512 | 0.530 | 0.505 |
蒙特卡罗[ | 0.667 | 0.544 | 0.505 | 0.522 | 0.519 | 0.636 | 0.543 | 0.517 | 0.551 | 0.534 |
GBMIA[ | 0.649 | 0.600 | 0.597 | 0.506 | 0.501 | 0.655 | 0.612 | 0.608 | 0.517 | 0.517 |
本文模型(n=50) | 0.712 | 0.638 | 0.709 | 0.635 | 0.614 | 0.749 | 0.651 | 0.709 | 0.614 | 0.608 |
模型 | ILSVRC2012 | 花卉识别 | ||||||||
DCGAN | InfoGAN | WGAN | PIGAN | RS-DPGAN | DCGAN | InfoGAN | WGAN | PIGAN | RS-DPGAN | |
黑盒1[ | 0.637 | 0.529 | 0.503 | 0.419 | 0.436 | 0.624 | 0.530 | 0.540 | 0.429 | 0.442 |
黑盒2[ | 0.631 | 0.566 | 0.511 | 0.423 | 0.478 | 0.622 | 0.546 | 0.543 | 0.419 | 0.504 |
黑盒3[ | 0.639 | 0.572 | 0.521 | 0.531 | 0.550 | 0.640 | 0.555 | 0.551 | 0.477 | 0.518 |
GAN-Leaks[ | 0.639 | 0.577 | 0.520 | 0.519 | 0.521 | 0.638 | 0.579 | 0.548 | 0.468 | 0.510 |
蒙特卡罗[ | 0.644 | 0.594 | 0.577 | 0.545 | 0.611 | 0.646 | 0.601 | 0.605 | 0.551 | 0.543 |
GBMIA[ | 0.657 | 0.608 | 0.600 | 0.547 | 0.630 | 0.655 | 0.603 | 0.594 | 0.548 | 0.540 |
本文模型(n=50) | 0.740 | 0.602 | 0.730 | 0.622 | 0.619 | 0.737 | 0.661 | 0.711 | 0.632 | 0.622 |
网络层 | ASR在50%以下 | ASR在50%~60% | ASR在60%以上 |
---|---|---|---|
FC1 | 0.34 | 0.71 | 0.83 |
FC2 | 0.13 | 0.85 | 0.83 |
FC3 | 0.09 | 0.78 | 0.87 |
Deconv1 | 0.41 | 0.67 | 0.70 |
Deconv2 | 0.33 | 0.65 | 0.76 |
BN1 | 0.51 | 0.52 | 0.49 |
BN2 | 0.57 | 0.52 | 0.55 |
所有层 | 0.30 | 0.69 | 0.95 |
Tab. 3 Spearman’s correlation of different network layers and attack success rates on WGAN
网络层 | ASR在50%以下 | ASR在50%~60% | ASR在60%以上 |
---|---|---|---|
FC1 | 0.34 | 0.71 | 0.83 |
FC2 | 0.13 | 0.85 | 0.83 |
FC3 | 0.09 | 0.78 | 0.87 |
Deconv1 | 0.41 | 0.67 | 0.70 |
Deconv2 | 0.33 | 0.65 | 0.76 |
BN1 | 0.51 | 0.52 | 0.49 |
BN2 | 0.57 | 0.52 | 0.55 |
所有层 | 0.30 | 0.69 | 0.95 |
网络层 | ASR在50%以下 | ASR在50%~60% | ASR在60%以上 |
---|---|---|---|
Deconv1 | 0.46 | 0.85 | 0.74 |
Deconv2 | 0.37 | 0.84 | 0.89 |
Deconv3 | 0.27 | 0.81 | 0.86 |
BN1 | 0.47 | 0.56 | 0.51 |
BN2 | 0.50 | 0.52 | 0.58 |
所有层 | -0.11 | 0.71 | 0.92 |
Tab. 4 Spearman’s correlation of different network layers and attack success rates on DCGAN
网络层 | ASR在50%以下 | ASR在50%~60% | ASR在60%以上 |
---|---|---|---|
Deconv1 | 0.46 | 0.85 | 0.74 |
Deconv2 | 0.37 | 0.84 | 0.89 |
Deconv3 | 0.27 | 0.81 | 0.86 |
BN1 | 0.47 | 0.56 | 0.51 |
BN2 | 0.50 | 0.52 | 0.58 |
所有层 | -0.11 | 0.71 | 0.92 |
[1] | 李乐阳,佟国香,赵迎志,等. 基于生成对抗网络的文本生成图像研究综述[J]. 电子科技, 2023, 36(10): 39-55. |
LI Y Y, TONG G X, ZHAO Y Z, et al. A survey of text-to-image synthesis based on generative adversarial network[J]. Electronic Science and Technology, 2023, 36(10): 39-55. | |
[2] | 王崇宇,毛琪,金立标. 基于生成对抗网络的图像视频编码综述[J]. 中国传媒大学学报(自然科学版), 2022, 29(6): 19-28. |
WANG C Y, MAO Q, JIN L B. Review on image and video coding via generative adversarial networks[J]. Journal of Communication University of China (Science and Technology), 2022, 29(6): 19-28. | |
[3] | PRADHYUMNA P, MOHANA. A survey of modern deep learning based Generative Adversarial Networks (GANs)[C]// Proceedings of the 6th International Conference on Computing Methodologies and Communication. Piscataway: IEEE, 2022: 1146-1152. |
[4] | HU H, SALCIC Z, SUN L, et al. Membership inference attacks on machine learning: a survey[J]. ACM Computing Surveys, 2022, 54(11s): No.235. |
[5] | 牛俊,马骁骥,陈颖,等. 机器学习中成员推理攻击和防御研究综述[J].信息安全学报, 2022, 7(6): 1-30. |
NIU J, MA X J, CHEN Y, et al. A survey on membership inference attacks and defenses in machine learning[J]. Journal of Cyber Security, 2022, 7(6): 1-30. | |
[6] | CHEN D, YU N, ZHANG Y, et al. GAN-Leaks: a taxonomy of membership inference attacks against GANs[C]// Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2020:343-362. |
[7] | HILPRECHT B, HERTERICH M, BERNAU D. Monte Carlo and reconstruction membership inference attacks against generative models[J]. Proceedings on Privacy Enhancing Technologies, 2019(4):232-249. |
[8] | WANG X, WANG N, WU L, et al. GBMIA: gradient-based membership inference attack in federated learning[C]// Proceedings of the 2023 IEEE International Conference on Communications. Piscataway: IEEE, 2023: 5066-5071. |
[9] | 彭长根,高婷,刘惠篮,等. 面向机器学习模型的基于PCA的成员推理攻击[J]. 通信学报, 2022, 43(1): 149-160. |
PENG C G, GAO T, LIU H L, et al. PCA-based membership inference attack for machine learning models[J]. Journal on Communications, 2022, 43(1): 149-160. | |
[10] | ZHANG M, YU N, WEN R, et al. Generated distributions are all you need for membership inference attacks against generative models[C]// Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2024:4827-4837. |
[11] | ZHANG Y, ZHOU H, WANG P, et al. Black-box based limited query membership inference attack[J]. IEEE Access, 2022, 10: 55459-55468. |
[12] | BLEI D M, KUCUKELBIR A, McAULIFFE J D. Variational inference: a review for statisticians[J]. Journal of the American Statistical Association, 2017, 13(112): No.859877. |
[13] | RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. [2024-09-12].. |
[14] | SHOKRI R, STRONATI M, SONG C, et al. Membership inference attacks against machine learning models[C]// Proceedings of the 2017 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2017: 3-18. |
[15] | WU Y, BURDA Y, SALAKHUTDINOV R, et al. On the quantitative analysis of decoder-based generative models[EB/OL]. [2024-07-08].. |
[16] | YEOM S, GIACOMELLI I, FREDRIKSON M, et al. Privacy risk in machine learning: analyzing the connection to overfitting[C]// Proceedings of the IEEE 31st Computer Security Foundations Symposium. Piscataway: IEEE, 2018: 268-282. |
[17] | NASR M, SHOKRI R, HOUMANSADR A. Comprehensive privacy analysis of deep learning: passive and active white-box inference attacks against centralized and federated learning[C]// Proceedings of the 2019 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2019: 739-753. |
[18] | HU H, PANG J. Membership inference attacks against GANs by leveraging over-representation regions[C]// Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2021: 2387-2389. |
[19] | ZHENG J, CAO Y, WANG H. Resisting membership inference attacks through knowledge distillation[J]. Neurocomputing, 2021, 452: 114-126. |
[20] | EFRON B. Bayes’ theorem in the 21st century[J]. Science, 2013, 240(6137): 1177-1178. |
[21] | STIGLER S M. Thomas Bayes’s Bayesian inference[J]. Journal of the Royal Statistical Society. Series A (General), 1982, 145(2):250-258. |
[22] | JORDAN M I, GHAHRAMANI Z, JAAKKOLA T S, et al. An introduction to variational methods for graphical models[J]. Machine Learning, 1999, 37(2): 183-233. |
[23] | ISHIGURO K, SATO I, UEDA N. Averaged collapsed variational Bayes inference[J]. Journal of Machine Learning Research, 2017, 18: 1-29. |
[24] | BISHOP C M. Pattern recognition and machine learning[M]. New York: Springer, 2006. |
[25] | XIAO H, RASUL K, VOLLGRAF R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms[EB/OL]. [2024-09-12].. |
[26] | KRIZHEVSKY A. Learning multiple layers of features from tiny images[R/OL]. [2024-09-12].. |
[27] | RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. |
[28] | NILSBACK M E, ZISSERMAN A. Automated flower classification over a large number of classes[C]// Proceedings of the 6th Indian Conference on Computer Vision, Graphics and Image Processing. Piscataway: IEEE, 2008: 722-729. |
[29] | CHEN X, DUAN Y, HOUTHOOFT R, et al. InfoGAN: interpretable representation learning by information maximizing generative adversarial nets[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 2180-2188. |
[30] | MARTIN A, SOUMITH C, LEON B. Wasserstein generative adversarial networks[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 214-223. |
[31] | HASSANZADEH P H, TILLMAN R E. Generative models with information-theoretic protection against membership inference attacks[EB/OL]. [2024-10-01].. |
[32] | HUANG Y, CAO L. Privacy-preserving remote sensing image generation and classification with differentially private GANs[J]. IEEE Sensors Journal, 2023, 23(18): 20805-20816. |
[1] | Yilin DENG, Fajiang YU. Pseudo random number generator based on LSTM and separable self-attention mechanism [J]. Journal of Computer Applications, 2025, 45(9): 2893-2901. |
[2] | Jin ZHOU, Yuzhi LI, Xu ZHANG, Shuo GAO, Li ZHANG, Jiachuan SHENG. Modulation recognition network for complex electromagnetic environments [J]. Journal of Computer Applications, 2025, 45(8): 2672-2682. |
[3] | Ying HUANG, Shengmei GAO, Guang CHEN, Su LIU. Low-light image enhancement network combining signal-to-noise ratio guided dual-branch structure and histogram equalization [J]. Journal of Computer Applications, 2025, 45(6): 1971-1979. |
[4] | Hui LI, Bingzhi JIA, Chenxi WANG, Ziyu DONG, Jilong LI, Zhaoman ZHONG, Yanyan CHEN. Generative adversarial network underwater image enhancement model based on Swin Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1439-1446. |
[5] | Lihu PAN, Shouxin PENG, Rui ZHANG, Zhiyang XUE, Xuzhen MAO. Video anomaly detection for moving foreground regions [J]. Journal of Computer Applications, 2025, 45(4): 1300-1309. |
[6] | Hong SHANGGUAN, Huiying REN, Xiong ZHANG, Xinglong HAN, Zhiguo GUI, Yanling WANG. Low-dose CT denoising model based on dual encoder-decoder generative adversarial network [J]. Journal of Computer Applications, 2025, 45(2): 624-632. |
[7] | Guoyu XU, Xiaolong YAN, Yidan ZHANG. DU-FastGAN: lightweight generative adversarial network based on dynamic-upsample [J]. Journal of Computer Applications, 2025, 45(10): 3067-3073. |
[8] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[9] | Haoran WANG, Dan YU, Yuli YANG, Yao MA, Yongle CHEN. Domain transfer intrusion detection method for unknown attacks on industrial control systems [J]. Journal of Computer Applications, 2024, 44(4): 1158-1165. |
[10] | Shuai REN, Yuanfa JI, Xiyan SUN, Zhaochuan WEI, Zian LIN. Prediction of landslide displacement based on improved grey wolf optimizer and support vector regression [J]. Journal of Computer Applications, 2024, 44(3): 972-982. |
[11] | Sunjie YU, Hui ZENG, Shiyu XIONG, Hongzhou SHI. Incentive mechanism for federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(2): 344-352. |
[12] | Hui ZHOU, Yuling CHEN, Xuewei WANG, Yangwen ZHANG, Jianjiang HE. Deep shadow defense scheme of federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(1): 223-232. |
[13] | Anyang LIU, Huaici ZHAO, Wenlong CAI, Zechao XU, Ruideng XIE. Adaptive image deblurring generative adversarial network algorithm based on active discrimination mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2288-2294. |
[14] | Shaoquan CHEN, Jianping CAI, Lan SUN. Differential privacy generative adversarial network algorithm with dynamic gradient threshold clipping [J]. Journal of Computer Applications, 2023, 43(7): 2065-2072. |
[15] | Xin JIN, Yangchuan LIU, Yechen ZHU, Zijian ZHANG, Xin GAO. Sinogram inpainting for sparse-view cone-beam computed tomography image reconstruction based on residual encoder-decoder generative adversarial network [J]. Journal of Computer Applications, 2023, 43(6): 1950-1957. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||