计算机应用 ›› 2014, Vol. 34 ›› Issue (3): 907-910.DOI: 10.11772/j.issn.1001-9081.2014.03.0907
王景丽1,2,3,李亮4,郁磊2,3,王计平2,方强5
WANGJingli1,2,3,LI Liang4,YU Lei2,3,WANG Jiping2,FANG Qiang5
摘要:
为实现脑卒中上肢居家康复评定的自动化和定量化,针对临床上最常用的Fugl-Meyer运动功能评定(FMA)量表,利用极限学习机(ELM)建立了FMA量表得分自动预测模型。选取FMA肩肘部分中的4个动作,采用固定于偏瘫侧前臂和上臂的两个加速度传感器采集24名患者的运动数据,经预处理和特征提取,基于遗传算法(GA)和ELM进行特征选择,分别建立单个动作ELM预测模型和综合预测模型。结果显示,该模型可对FMA肩肘部分得分进行精确的自动预测,预测均方根误差为2.1849分。该方法突破了传统评定中主观性、耗时性的限制及对康复医师或治疗师的依赖性,可方便用于居家康复的评定。速度传感器采集24名患者的运动数据,经预处理和特征提取,基于遗传算法(Genetic Algorithm, GA)和ELM进行特征选择,分别建立单个动作ELM预测模型和综合预测模型。结果显示,该模型可对FMA肩肘部分得分进行精确的自动预测,预测均方根误差为2.1849分。该方法突破了传统评定中主观性、耗时性的限制及对康复医师或治疗师的依赖性,可方便用于居家康复的评定。
中图分类号: