计算机应用 ›› 2014, Vol. 34 ›› Issue (9): 2600-2603.DOI: 10.11772/j.issn.1001-9081.2014.09.2600
王争,何宏,谭永红
收稿日期:
2014-03-21
修回日期:
2014-06-03
发布日期:
2014-09-30
出版日期:
2014-09-01
通讯作者:
何宏
作者简介:
基金资助:
国家自然科学基金资助项目;上海市教委科研创新项目;上海市自然科学基金资助项目
WANG Zheng,HE Hong,TAN Yonghong
Received:
2014-03-21
Revised:
2014-06-03
Online:
2014-09-30
Published:
2014-09-01
Contact:
HE Hong
Supported by:
Signal analysis and nonlinear compensation of IPMC sensors;Filtering and state estimation of non-smooth stochastic sandwich systems with hysteresis;Patten recognition of nonlinear meridian information system with multiple variable coupling
摘要:
针对小波阈值滤波方法中硬阈值方法易产生震荡和软阈值方法易产生波形失真的缺点,提出了一种基于遗传优化函数曲线的小波阈值法GOCWT。该方法利用二次函数模拟阈值转换函数曲线,并根据均方根误差(RMSE)与平滑度建立适应度函数,运用遗传算法(GA)对转换函数参数进行寻优。通过对48段心电信号滤波性能指标分析发现:与硬阈值滤波方法相比,GOCWT的平滑度性能提升了36%;与软阈值滤波方法相比,其均方根误差性能提升了32%。实验结果表明,GOCWT的滤波性能优于硬、软阈值滤波方法,既避免了心电信号滤波时产生的震荡现象,同时又很好地保留了信号的峰值等细节特征。
中图分类号:
王争 何宏 谭永红. 基于遗传优化函数曲线的小波阈值法心电信号除噪[J]. 计算机应用, 2014, 34(9): 2600-2603.
WANG Zheng HE Hong TAN Yonghong. Wavelet thresholding method based on genetic optimization function curve for ECG noise removal[J]. Journal of Computer Applications, 2014, 34(9): 2600-2603.
[1]〖BP(〗ZHONG Y, XU L, YAN L, et al.Adaptive R-wave detection method in dynamic ECG with heavy EMG artifact [C]// ICIA 2012: Proceedings of the 2012 International Conference on Information and Automation. Piscataway: IEEE, 2012: 83-87.〖BP)〗
YUE Z. Adaptive R-wave detection method in dynamic ECG with heavy EMG artifact [C]// ICIA 2012: Proceedings of the 2012 International Conference on Information and Automation. Piscataway: IEEE, 2012: 886-893.
[2]DEBBABI N, EI ASMI S. Algebraic approach for R-peak detection in the ElectroCardioGram (ECG) signal[C]// ICSCS 2012: Proceedings of the 2012 1st International Conference on System and Computer Science. Piscataway: IEEE, 2012: 1-5.
[3]SONALI O, SINGH O, SUNKARIA R K. ECG signal denoising based on empirical mode decomposition and moving average filter[C]// ISPCC 2013: Proceedings of the 2013 IEEE International Conference on Signal Processing, Computing and Control. Piscataway: IEEE, 2013: 677-690.
[4]RAO N, LI L.Biomedical signal processing[M]. Chengdu: University of Electronic Science and Technology of China Press, 2005. (饶妮妮,李凌.生物医学信号处理[M].成都:电子科技大学出版社,2005.)
[5]DONOHO D L. De-nosing by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627.
[6]DONOHO D L, JOHNSTONE I M. Ideal spatial adaption via wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425-455.
[7]DONOHO D L, JOHNSTONE I M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of the American Statistical Association, 1995, 90(432): 1200-1224.
[8]DONOHO D L, JOHNSTONE I M, KERKYACHARIAN G. Wavelet shrinkage :Asymptopia[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1995, 57(2): 301-369.
[9]YIN X, LIU A, LIU Y. Study if improved modulus maximum algorithm based on thresholding wavelet in ultrasonic testing signal de-noising for super alloy[C]// ICMTMA 2010: Proceedings of the 2010 Inernatona Conference on Measuring Technology and Mechatronics Automtion. Pisctaway: IEEE, 2010: 552-555.
[10]DONG X, YUE Y, QIN X, et al.Signal denoising based on improved wavelet packet thresholding function [C]// CMCE 2010: Proceedings of the 2010 Internal Conference on Mechatronics, Control and Electronic Engineering. Piscataway: IEEE, 2010, 6: 382-385.
[11]LI L, MA L, DUAN Y. An improved wavelet threshold denoising algorithm and its sumulation analysis[J]. Process Automation Instrumentation, 2011, 32(7): 21-24. (李永军,马立元,段永刚.一种改进的小波阈值去噪算法及其仿真分析[J].自动化仪表,2011,32(7):21-24.)
〖HJ1.45mm〗[12]TIAN C, LI B. An improved SAR image speckle reduction algorithm of wavelet threshold[C]// RSETE 2012: Proceedings of the 2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering. Piscataway: IEEE, 2012: 1-4.
[13]YANG Q, CHAO X, LIU Y. The research of fault detection and diagnosis based on lifting scheme wavelet and threshold denoising[J]. Transactions of Shenyang Ligong University, 2012,31(6):55-60.(杨青,晁晓洁,刘云琦.提升小波阈值去噪的故障检测与诊断方法研究[J].沈阳理工大学学报,2012,31(6):55-60.)
[14]LI S, JI Y, LIU G. Optimal wavelet basis selection of wavelet shrinkage for ECG de-noising [C]// MASS '09: Proceedings of the 2009 International Conference on Management and Service Science. Piscataway: IEEE, 2009: 1-4.
[15]MOODY G B, MARK R G. The impact of the MIT-BIH arrhythmia database [J]. IEEE Engineering in Medicine and Biology Magazine, 2001, 20(3): 45-50.
〖BP(〗http://ecg.mit.edu/george/publications/mitdb-embs-2001.pdf〖BP)〗
[16]LIU X. Meridian points ECG signal feature extractio and pattern mining[D]. Shanghai: Shanghai Normal University, 2013. (刘鑫.经络穴位心电信号的特征提取与模式挖掘[D].上海师范大学,2013.) |
[1] | 吕乐 张博瀚 荆军昌 刘栋. 基于持久性的多目标节点隐藏方法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[2] | 宫智宇 王士同. 面向重尾噪声图像分类的残差网络学习方法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[3] | 王虎 王晓峰 李可 马云洁. 融合多头自注意力的标签语义嵌入联邦类增量学习方法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[4] | 丁建立, 黄辉, 曹卫东. 航班链运行状态动态监控方法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3941-3948. |
[5] | 刘晶鑫, 黄雯静, 徐亮胜, 黄冲, 吴建生. 字典学习与样本关联保持结合的无监督特征选择模型[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3766-3775. |
[6] | 宋逸飞, 柳毅. 基于数据增强和标签噪声的快速对抗训练方法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3798-3807. |
[7] | 沈嫣然, 温昕, 张瑾昊, 张帅, 曹锐, 高保禄. 轻量级多尺度卷积网络的功能磁共振成像脑龄预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3949-3957. |
[8] | 张祖篡, 陈学斌, 高瑞, 邹元怀. 基于标签分类的联邦学习客户端选择方法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3759-3765. |
[9] | 蒋权 黄文清 苟志勇. 基于等变图神经网络的拉格朗日粒子流模拟[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[10] | 李岚皓 严皓钧 周号益 孙庆赟 李建欣. 基于神经网络的多尺度信息融合时间序列长期预测模型[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[11] | 廖炎华 鄢元霞 潘文林. 基于YOLOv9的交通路口图像的多目标检测算法[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[12] | 张学飞 张丽萍 闫盛 侯敏 赵宇博. 知识图谱与大语言模型协同的个性化学习推荐[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[13] | 索晋贤 张丽萍 闫盛 王东奇 张雅雯. 可解释的深度知识追踪方法综述[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[14] | 陈丹阳 张长伦. 多尺度去相关的图卷积网络[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
[15] | 蒋沛宇 王永光 任亚亭 李硕晨 谭火彬. 基于测量不确定度表示指南的目标检测不确定度测量方案[J]. 《计算机应用》唯一官方网站, 0, (): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||