《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (3): 773-784.DOI: 10.11772/j.issn.1001-9081.2024070971
收稿日期:
2024-07-10
修回日期:
2024-09-25
接受日期:
2024-10-09
发布日期:
2024-11-19
出版日期:
2025-03-10
通讯作者:
张丽萍
作者简介:
张学飞(1997—),男,内蒙古乌兰察布人,硕士研究生,CCF会员,主要研究方向:计算机教育基金资助:
Xuefei ZHANG, Liping ZHANG(), Sheng YAN, Min HOU, Yubo ZHAO
Received:
2024-07-10
Revised:
2024-09-25
Accepted:
2024-10-09
Online:
2024-11-19
Published:
2025-03-10
Contact:
Liping ZHANG
About author:
ZHANG Xuefei, born in 1997, M. S. candidate. His research interests include computer education.Supported by:
摘要:
个性化学习推荐是智慧教育领域的重要研究课题,它的核心目标是利用推荐算法和模型为学习者提供与他们的个人学习需求、兴趣、能力和历史相匹配的有效学习资源,从而提高学习者的学习效果。目前的推荐方法存在冷启动、数据稀疏、可解释性差和过度个性化等问题,而知识图谱与大语言模型的结合为解决上述问题提供了有力支持。首先,对个性化学习推荐的概念、研究现状等内容进行概述;其次,分别讨论知识图谱和大语言模型(LLM)的概念以及在个性化学习推荐中的具体应用;再次,总结知识图谱与LLM在个性化学习推荐中协同应用的方法;最后,展望知识图谱和LLM在个性化学习推荐中的未来发展方向,从而为个性化学习推荐领域的持续发展和创新实践提供借鉴和启示。
中图分类号:
张学飞, 张丽萍, 闫盛, 侯敏, 赵宇博. 知识图谱与大语言模型协同的个性化学习推荐[J]. 计算机应用, 2025, 45(3): 773-784.
Xuefei ZHANG, Liping ZHANG, Sheng YAN, Min HOU, Yubo ZHAO. Personalized learning recommendation in collaboration of knowledge graph and large language model[J]. Journal of Computer Applications, 2025, 45(3): 773-784.
任务 | 方法 | 特点 |
---|---|---|
知识图谱增强 大语言模型 预训练 | ERNIE[ | 将多知识库信息融合到LLM的预训练阶段,能精确提供学习材料和解答问题,更准确地把握学习者的需求 |
KnowBERT[ | 整合多知识库信息到LLM的预训练中,通过增强语义理解能力,实现精准的学习材料和问题答案推荐 | |
K-Adapter[ | 解决大型预训练模型在知识注入过程中的历史知识流失问题,实现学习者在持续学习过程中对新旧知识的累积与融合 | |
BioKGLM[ | 整合大规模知识图谱到外部结构中,根据学习者的当前知识水平推荐相关的病例分析、最新研究成果和相关治疗方法 | |
知识图谱增强 大语言模型 推理结果 | Chain-of-thought [ | 引入思维链提示词,增强模型复杂推理的能力,更准确地根据学习者的知识水平和需求推荐合适的学习资源和解决问题的步骤 |
KGQA[ | 结合知识图谱的三元组与LLM的常识性知识,实现可验证事实的推理过程,提高个性化学习推荐的准确性和减少推理错误 | |
LLM⊗KG[ | 利用ToG在KG上迭代束搜索,探索相关实体和关系,执行深度推理,发现并返回最可能的推理结果,帮助学习者规划最佳学习路线 | |
知识图谱增强 大语言模型 可解释性 | RAG[ | 结合参数化内存和非参数化内存,以扩展模型的知识,并解决LLM中的幻觉问题 |
HyKGE[ | 引入片段重新排序机制,动态调整推荐内容,提高推荐逻辑的透明度 | |
Explanation Dataset[ | 结合KG和GAT,增强结合在问题解答任务中的可解释性,提高个性化学习推荐的准确性,并使推荐逻辑更透明化 | |
GLAME[ | 结合KG和图知识编辑模块,强化结合的编辑过程,减少模型幻觉问题,提供更精准和可靠的知识推荐 |
表1 知识图谱增强的大语言模型的特点
Tab. 1 Characteristics of knowledge graph enhanced large models
任务 | 方法 | 特点 |
---|---|---|
知识图谱增强 大语言模型 预训练 | ERNIE[ | 将多知识库信息融合到LLM的预训练阶段,能精确提供学习材料和解答问题,更准确地把握学习者的需求 |
KnowBERT[ | 整合多知识库信息到LLM的预训练中,通过增强语义理解能力,实现精准的学习材料和问题答案推荐 | |
K-Adapter[ | 解决大型预训练模型在知识注入过程中的历史知识流失问题,实现学习者在持续学习过程中对新旧知识的累积与融合 | |
BioKGLM[ | 整合大规模知识图谱到外部结构中,根据学习者的当前知识水平推荐相关的病例分析、最新研究成果和相关治疗方法 | |
知识图谱增强 大语言模型 推理结果 | Chain-of-thought [ | 引入思维链提示词,增强模型复杂推理的能力,更准确地根据学习者的知识水平和需求推荐合适的学习资源和解决问题的步骤 |
KGQA[ | 结合知识图谱的三元组与LLM的常识性知识,实现可验证事实的推理过程,提高个性化学习推荐的准确性和减少推理错误 | |
LLM⊗KG[ | 利用ToG在KG上迭代束搜索,探索相关实体和关系,执行深度推理,发现并返回最可能的推理结果,帮助学习者规划最佳学习路线 | |
知识图谱增强 大语言模型 可解释性 | RAG[ | 结合参数化内存和非参数化内存,以扩展模型的知识,并解决LLM中的幻觉问题 |
HyKGE[ | 引入片段重新排序机制,动态调整推荐内容,提高推荐逻辑的透明度 | |
Explanation Dataset[ | 结合KG和GAT,增强结合在问题解答任务中的可解释性,提高个性化学习推荐的准确性,并使推荐逻辑更透明化 | |
GLAME[ | 结合KG和图知识编辑模块,强化结合的编辑过程,减少模型幻觉问题,提供更精准和可靠的知识推荐 |
任务 | 方法 | 特点 |
---|---|---|
大语言模型增强 知识图谱嵌入 | KEPLER[ | 将事实知识整合到PLM中且利用强大的PLM生成有效文本增强知识库,生成与学习者目标紧密相关的知识内容,提供定制化的内容推荐 |
Coke[ | 根据PLM的文本上下文动态选择上下文知识并嵌入知识上下文,动态推荐与学习者当前学习目标和需求紧密相关的知识 | |
LMKE[ | 采用大语言模型来推导知识嵌入,丰富长尾实体的表征,增加学习材料的深度和多样性,提升学习效率和跨学科学习体验 | |
大语言模型增强 知识图谱补全 | MPIKGC[ | 增强对实体描述的理解,深化对关系的理解,通过预测潜在三元组的可信度,利用知识图谱中的文本信息,提高推荐内容的完整性和准确性 |
loss function[ | 能够调节大语言模型对知识三元组可信度的评估,从而帮助学习者建立对学习材料的信任,并更积极地参与学习过程 | |
FTL-LM[ | 结合基于路径的拓扑上下文学习和变分EM算法提炼的软逻辑规则,使推荐内容能够实时适应学习者的反馈和进展 | |
大语言模型增强 知识图谱构建 | Code4UIE[ | 结合大语言模型的通用检索增强能力,定义Python类处理结构化知识,分析用户的学习路径和需求,推荐最相关和有价值的知识内容 |
JointGT[ | 通过预训练任务来对齐知识图谱和文本的表征,促进学习者对复杂概念和关系的深入理解 | |
DRAGON[ | 将成对的文本片段和相关的语言知识子图作为输入,并双向融合两种模式的信息,支持多模态学习 | |
RoG[ | 提炼知识图谱中的信息实现与任意LLM的无缝集成,检索有效的推理路径,实时更新知识图谱信息和动态调整推荐内容 |
表2 大语言模型增强的知识图谱的特点
Tab. 2 Characteristics of large model enhanced knowledge graphs
任务 | 方法 | 特点 |
---|---|---|
大语言模型增强 知识图谱嵌入 | KEPLER[ | 将事实知识整合到PLM中且利用强大的PLM生成有效文本增强知识库,生成与学习者目标紧密相关的知识内容,提供定制化的内容推荐 |
Coke[ | 根据PLM的文本上下文动态选择上下文知识并嵌入知识上下文,动态推荐与学习者当前学习目标和需求紧密相关的知识 | |
LMKE[ | 采用大语言模型来推导知识嵌入,丰富长尾实体的表征,增加学习材料的深度和多样性,提升学习效率和跨学科学习体验 | |
大语言模型增强 知识图谱补全 | MPIKGC[ | 增强对实体描述的理解,深化对关系的理解,通过预测潜在三元组的可信度,利用知识图谱中的文本信息,提高推荐内容的完整性和准确性 |
loss function[ | 能够调节大语言模型对知识三元组可信度的评估,从而帮助学习者建立对学习材料的信任,并更积极地参与学习过程 | |
FTL-LM[ | 结合基于路径的拓扑上下文学习和变分EM算法提炼的软逻辑规则,使推荐内容能够实时适应学习者的反馈和进展 | |
大语言模型增强 知识图谱构建 | Code4UIE[ | 结合大语言模型的通用检索增强能力,定义Python类处理结构化知识,分析用户的学习路径和需求,推荐最相关和有价值的知识内容 |
JointGT[ | 通过预训练任务来对齐知识图谱和文本的表征,促进学习者对复杂概念和关系的深入理解 | |
DRAGON[ | 将成对的文本片段和相关的语言知识子图作为输入,并双向融合两种模式的信息,支持多模态学习 | |
RoG[ | 提炼知识图谱中的信息实现与任意LLM的无缝集成,检索有效的推理路径,实时更新知识图谱信息和动态调整推荐内容 |
1 | 赵宇博,张丽萍,闫盛,等. 个性化学习中学科知识图谱构建与应用综述[J]. 计算机工程与应用, 2023, 59(10):1-21. |
ZHAO Y B, ZHANG L P, YAN S, et al. Construction and application of discipline knowledge graph in personalized learning [J]. Computer Engineering and Applications, 2023, 59(10):1-21. | |
2 | 李兴洲,徐莉,姬冰澌. 教育未来发展新趋势:迈向新人文主义的终身教育——基于联合国教科文组织前瞻性教育报告[J]. 清华大学教育研究, 2023, 44(3):65-74. |
LI X Z, XU L, JI B S. The new trend of the future development of education: towards the lifelong education of new humanism — an analysis based on the UNESCO’s education reports [J]. Tsinghua Journal of Education, 2023, 44(3):65-74. | |
3 | IDRISSI N, ZELLOU A, HOURRANE O, et al. Addressing cold start challenges in recommender systems: towards a new hybrid approach [C]// Proceedings of the 2019 International Conference on Smart Applications, Communications and Networking. Piscataway: IEEE, 2019: 1-6. |
4 | 牟智佳. “人工智能+”时代的个性化学习理论重思与开解[J]. 远程教育杂志, 2017, 35(3):22-30. |
MOU Z J. The reconsideration and solution of personalized learning theory in the era of “artificial intelligence plus” [J]. Journal of Distance Education, 2017, 35(3):22-30. | |
5 | JI Z, LEE N, FRIESKE R, et al. Survey of hallucination in natural language generation [J]. ACM Computing Surveys, 2023, 55(12): No.248. |
6 | PAN S, LUO L, WANG Y, et al. Unifying large language models and knowledge graphs: a roadmap [J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(7):3580-3599. |
7 | 吴正洋,汤庸,刘海. 个性化学习推荐研究综述[J]. 计算机科学与探索, 2022, 16(1):21-40. |
WU Z Y, TANG Y, LIU H. Survey of personalized learning recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1):21-40. | |
8 | 吴国栋,刘旭旭,毕海娇,等. 基于元学习个性化推荐研究综述[J]. 计算机工程与科学, 2024, 46(2): 338-352. |
WU G D, LIU X X, BI H J, et al. Review of personalized recommendation research based on meta-learning [J]. Computer Engineering and Science, 2024, 46(2): 338-352. | |
9 | 赵俊逸,庄福振,敖翔,等. 协同过滤推荐系统综述[J]. 信息安全学报, 2021, 6(5): 17-34. |
ZHAO J Y, ZHUAN F Z, AO X, et al. Survey of collaborative filtering recommender systems [J]. Journal of Cyber Security, 2021, 6(5): 17-34. | |
10 | 于蒙,何文涛,周绪川,等. 推荐系统综述[J]. 计算机应用, 2022, 42(6): 1898-1913. |
YU M, HE W T, ZHOU X C, et al. Review of recommender system [J]. Journal of Computer Applications, 2022, 42(6): 1898-1913. | |
11 | 高琳琦. 生成式人工智能在个性化学习中的应用模式[J]. 天津师范大学学报(基础教育版), 2023, 24(4):36-40. |
GAO L Q. Application method of generative artificial intelligence in personalized learning [J]. Journal of Tianjin Normal University (Elementary Education Edition), 2023, 24(4):36-40. | |
12 | Wikipedia. Google Knowledge graph [EB/OL]. [2024-01-09].. |
13 | 李源,马新宇,杨国利,等. 面向知识图谱和大语言模型的因果关系推断综述[J]. 计算机科学与探索, 2023, 17(10):2358-2376. |
LI Y, MA X Y, YANG G L, et al. Survey of causal inference for knowledge graphs and large language models [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2358-2376. | |
14 | 延照耀,丁苍峰,马乐荣,等. 面向图神经网络的知识图谱嵌入研究进展[J]. 计算机科学与探索, 2023, 17(8):1793-1813. |
YAN Z Y, DING C F, MA L R, et al. Advances in knowledge graph embedding based on graph neural networks [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8):1793-1813. | |
15 | ILIEVSKI F, SZEKELY P, ZHANG B. CSKG: the commonsense knowledge graph [C]// Proceedings of the 2021 European Semantic Web Conference, LNCS 12731. Cham: Springer, 2021: 680-696. |
16 | ABU-SALIH B. Domain-specific knowledge graphs: a survey [J]. Journal of Network and Computer Applications, 2021, 185: No.103076. |
17 | 王春雷,王肖,刘凯. 多模态知识图谱表示学习综述[J]. 计算机应用, 2024, 44(1):1-15. |
WANG C L, WANG X, LIU K. Multimodal knowledge graph representation learning: a review[J]. Journal of Computer Applications, 2024, 44(1):1-15. | |
18 | SHEN T, ZHANG F, CHENG J. A comprehensive overview of knowledge graph completion [J]. Knowledge-Based Systems, 2022, 255: No.109597. |
19 | 王宇,朱梦霞,杨尚辉,等. 深度知识追踪模型综述和性能比较[J]. 软件学报, 2023, 34(3):1365-1395. |
WANG Y, ZHU M X, YANG S H, et al. Review and performance comparison of deep knowledge tracking models [J]. Journal of Software, 2023, 34(3): 1365-1395. | |
20 | ZHANG J, JING S, LIANG S. Research on personalized learning resource recommendation based on knowledge graph [C]// Proceedings of the 3rd International Conference on Electronic Information Engineering and Computer Communication. Piscataway: IEEE, 2023: 111-118. |
21 | LI B, LI G, XU J, et al. A personalized recommendation framework based on MOOC system integrating deep learning and big data [J]. Computers and Electrical Engineering, 2023, 106: No.108571. |
22 | ZHANG S, HUI N, ZHAI P, et al. A fine-grained and multi-context-aware learning path recommendation model over knowledge graphs for online learning communities [J]. Information Processing and Management, 2023, 60(5): No.103464. |
23 | ZHANG X, LIU S, WANG H. Personalized learning path recommendation for e-learning based on knowledge graph and graph convolutional network [J]. International Journal of Software Engineering and Knowledge Engineering, 2023, 33(1): 109-131. |
24 | SHOU Z, WEN Y, CHEN P, et al. Personalized knowledge map recommendations based on interactive behavior preferences [J]. International Journal of Performability Engineering, 2021, 17(1): 36-49. |
25 | DUAN S, CHEN K, YANG Y, et al. Research on personalized learning recommendation based on subject knowledge graphs and learner portraits [C]// Proceedings of the 2023 International Conference on Computer Science and Educational Informatization, CCIS 1900. Singapore: Springer, 2024: 367-374. |
26 | JUNG H, JANG Y, KIM S, et al. KPCR: knowledge graph enhanced personalized course recommendation [C]// Proceedings of the 2021 Australasian Joint Conference on Artificial Intelligence, LNCS 13151. Cham: Springer, 2022: 739-750. |
27 | WEI Z, WANG K, LI F, et al. M3KGR: a momentum contrastive multi-modal knowledge graph learning framework for recommendation [J]. Information Sciences, 2024, 676: No.120812. |
28 | RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision [C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021:8748-8763. |
29 | SUN R, CAO X, ZHAO Y, et al. Multi-modal knowledge graphs for recommender systems [C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 1405-1414. |
30 | 徐月梅,胡玲,赵佳艺,等. 大语言模型与多语言智能的研究进展与启示[J]. 计算机应用, 2023, 43(S2): 1-8. |
XU Y M, HU L, ZHAO J Y, et al. Research progress and enlightenment of large language models on multi-lingual intelligence [J]. Journal of Computer Applications, 2023, 43(S2): 1-8. | |
31 | 董永峰,王雅琮,董瑶,等. 在线学习资源推荐综述[J]. 计算机应用, 2023, 43(6): 1655-1663. |
DONG Y F, WANG Y C, DONG Y, et al. Survey of online learning resource recommendation [J]. Journal of Computer Applications, 2023, 43(6): 1655-1663. | |
32 | 王佑镁,王旦,梁炜怡,等. “阿拉丁神灯”还是“潘多拉魔盒”:ChatGPT 教育应用的潜能与风险[J]. 现代远程教育研究, 2023, 35(2): 48-56. |
WANG Y M, WANG D, LIANG W Y, et al. “Aladdin’s Lamp” or “Pandora’s Box”: the potential and risks of ChatGPT’s educational applications [J]. Modern Distance Education Research, 2023, 35(2): 48-56. | |
33 | ROMBACH R, BLATTMANN A, LORENZ D, et al. High resolution image synthesis with latent diffusion models [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 10684-10695. |
34 | 徐国庆,蔡金芳,姜蓓佳,等. ChatGPT/生成式人工智能与未来职业教育[J]. 华东师范大学学报(教育科学版), 2023, 41(7): 64-77. |
XU G Q, CAI J F, JIANG B J, et al. ChatGPT/AIGC and the future vocational education [J]. Journal of East China Normal University (Educational Sciences), 2023, 41(7): 64-77. | |
35 | JI J, LI Z, XU S, et al. GenRec: large language model for generative recommendation [C]// Proceedings of the 2024 European Conference on Information Retrieval, LNCS 14610. Cham: Springer, 2024: 494-502. |
36 | SRIVASTAV G, KANT S, SRIVASTAVA D. An efficient sentiment analysis technique for virtual learning environments using deep learning model and fine-tuned EdBERT [J]. International Journal of Intelligent Systems and Applications in Engineering, 2023, 11(5s): 468-476. |
37 | KIM D E, HONG C, KIM W H. Efficient Transformer-based knowledge tracing for a personalized language education application [C]// Proceedings of the 10th ACM Conference on Learning @ Scale. New York: ACM, 2023: 336-340. |
38 | GENG S, LIU S, FU Z, et al. Recommendation as Language Processing (RLP): a unified Pretrain, Personalized Prompt & Predict Paradigm (P5) [C]// Proceedings of the 16th ACM Conference on Recommender Systems. New York: ACM, 2022: 299-315. |
39 | LIU J, LIU C, ZHOU P, et al. Is ChatGPT a good recommender? a preliminary study [EB/OL]. [2024-03-11].. |
40 | XU A, MONROE W, BICKNELL K. Large language model augmented exercise retrieval for personalized language learning[C]// Proceedings of the 14th Learning Analytics and Knowledge Conference. New York: ACM, 2022: 284-294. |
41 | ZHANG Z, HAN X, LIU Z, et al. ERNIE: enhanced language representation with informative entities [C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 1441-1451. |
42 | PETERS M E, NEUMANN M, LOGAN R L, Ⅳ, et al. Knowledge enhanced contextual word representations [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 43-54. |
43 | WANG R, TANG D, DUAN N, et al. K-Adapter: infusing knowledge into re-trained models with adapters [C]// Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 1405-1418. |
44 | FEI H, REN Y, ZHANG Y, et al. Enriching contextualized language model from knowledge graph for biomedical information extraction [J]. Briefings in Bioinformatics, 2021, 22(3): No.bbaa110. |
45 | WEI J, WANG X, SCHUURMANS D, et al. Chain-of-thought prompting elicits reasoning in large language models [C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 24824-24837. |
46 | AHN J, VERMA R, LOU R, et al. Large language models for mathematical reasoning: progresses and challenges [C]// Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop. Stroudsburg: ACL, 2024: 225-237. |
47 | CHU Z, CHEN J, CHEN Q, et al. A survey of chain of thought reasoning: advances, frontiers and future [EB/OL]. [2024-02-10]. . |
48 | HU C, FU J, DU C, et al. ChatDB: augmenting LLMs with databases as their symbolic memory [EB/OL]. [2024-01-25].. |
49 | SUN J, XU C, TANG L, et al. Think-on-Graph: deep and responsible reasoning of large language model with knowledge graph [EB/OL]. [2024-01-25]. . |
50 | TOROGHI A, GUO W, ABDOLLAH POUR M M, et al. Right for right reasons: large language models for verifiable commonsense knowledge graph question answering [C]// Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2024: 6601-6633. |
51 | ZHAO H, CHEN H, YANG F, et al. Explainability for large language models: a survey [J]. ACM Transactions on Intelligent Systems and Technology, 2024, 15(2): No.20. |
52 | ZHANG M, YE X, LIU Q, et al. Knowledge graph enhanced large language model editing [EB/OL]. [2024-04-02]. . |
53 | AGRAWAL G, KUMARAGE T, ALGHAMI Z, et al. Can knowledge graphs reduce hallucinations in LLMs? a survey [C]// Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers). Stroudsburg: ACL, 2024: 3947-3960. |
54 | LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 9459-9474. |
55 | RAM O, LEVINE Y, DALMEDIGOS I, et al. In-context retrieval-augmented language models [J]. Transactions of the Association for Computational Linguistics, 2023, 11: 1316-1331. |
56 | CHEN Z, CHEN J, SINGH A, et al. XplainLLM: a knowledge-augmented dataset for reliable grounded explanations in LLMs [C]// Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2024:7578-7596. |
57 | JIANG X, ZHANG R, XU Y, et al. HyKGE: a hypothesis knowledge graph enhanced framework for accurate and reliable medical LLMs responses [EB/OL]. [2024-02-11]. . |
58 | 张天成,田雪,孙相会,等. 知识图谱嵌入技术研究综述[J]. 软件学报, 2023, 34(1):277-311. |
ZHANG T C, TIAN X, SUN X H, et al. Overview on knowledge graph embedding technology research [J]. Journal of Software, 2023, 34(1): 277-311. | |
59 | WANG X, GAO T, ZHU Z, et al. KEPLER: a unified model for knowledge embedding and pre-trained language representation [J]. Transactions of the Association for Computational Linguistics, 2021, 9: 176-194. |
60 | BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data [C]// Proceedings of the 27th International Conference on Neural Information Processing Systems — Volume 2. Red Hook: Curran Associates Inc., 2013: 2787-2795. |
61 | SU Y, HAN X, ZHANG Z, et al. CokeBERT: contextual knowledge selection and embedding towards enhanced pre-trained language models [J]. AI Open, 2021, 2: 127-134. |
62 | WANG X, HE Q, LIANG J, et al. Language models as knowledge embeddings [C]// Proceedings of the 31st International Joint Conference on Artificial Intelligence. California: IJCAI.org, 2022: 2291-2297. |
63 | 彭晏飞,张睿思,王瑞华,等. 少样本知识图谱补全技术研究[J]. 计算机科学与探索, 2023, 17(6):1268-1284. |
PENG Y F, ZHANG R S, WANG R H, et al. Survey on few-shot knowledge graph completion technology [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6):1268-1284. | |
64 | XU D, ZHANG Z, LIN Z, et al. Multi-perspective improvement of knowledge graph completion with large language models [C]// Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation. Stroudsburg: ACL, 2024: 11956-11968. |
65 | ALAM M M, RONY M R A H, NAYYERI M, et al. Language model guided knowledge graph embeddings [J]. IEEE Access, 2022, 10: 76008-76020. |
66 | LIN Q, MAO R, LIU J, et al. Fusing topology contexts and logical rules in language models for knowledge graph completion[J]. Information Fusion, 2023, 90: 253-264. |
67 | 阮彤,王梦婕,王昊奋,等. 垂直知识图谱的构建与应用研究[J]. 知识管理论坛, 2016, 1(3):226-234. |
RUAN T, WANG M J, WANG H F, et al. Research on the construction and application of vertical knowledge graphs [J]. Knowledge Management Forum, 2016, 1(3): 226-234. | |
68 | 徐增林,盛泳潘,贺丽荣,等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4): 589-606. |
XU Z L, SHENG Y P, HE L R, et al. Review on knowledge graph techniques [J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 589-606. | |
69 | GUO Y, LI Z, JIN X, et al. Retrieval-augmented code generation for universal information extraction [C]// Proceedings of the 2024 CCF International Conference on Natural Language Processing and Chinese Computing. Singapore: Springer, 2025: 30-42. |
70 | KE P, JI H, RAN Y, et al. JointGT: graph-text joint representation learning for text generation from knowledge graphs[C]// Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 2526-2538. |
71 | YASUNAGA M, BOSSELUT A, REN H, et al. Deep bidirectional language-knowledge graph pretraining [C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 37309-37323. |
72 | LUO L, LI Y F, HAFFARI G, et al. Reasoning on graphs: faithful and interpretable large language model reasoning [EB/OL]. [2024-03-01]. . |
[1] | 董艳民, 林佳佳, 张征, 程程, 吴金泽, 王士进, 黄振亚, 刘淇, 陈恩红. 个性化学情感知的智慧助教算法设计与实践[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 765-772. |
[2] | 秦小林, 古徐, 李弟诚, 徐海文. 大语言模型综述与展望[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 685-696. |
[3] | 袁成哲, 陈国华, 李丁丁, 朱源, 林荣华, 钟昊, 汤庸. ScholatGPT:面向学术社交网络的大语言模型及智能应用[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 755-764. |
[4] | 曹鹏, 温广琪, 杨金柱, 陈刚, 刘歆一, 季学纯. 面向测试用例生成的大模型高效微调方法[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 725-731. |
[5] | 何静, 沈阳, 谢润锋. 大语言模型幻觉现象的识别与优化[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 709-714. |
[6] | 徐月梅, 叶宇齐, 何雪怡. 大语言模型的偏见挑战:识别、评估与去除[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 697-708. |
[7] | 蔡启健, 谭伟. 语义图增强的多模态推荐算法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 421-427. |
[8] | 王猛, 张大千, 周冰艳, 马倩影, 吕继东. 基于时序知识图谱补全的CTCS-3级列控车载接口设备故障诊断方法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 677-684. |
[9] | 李瑞, 李贯峰, 胡德洲, 高文馨. 融合路径与子图特征的知识图谱多跳推理模型[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 32-39. |
[10] | 程子栋, 李鹏, 朱枫. 物联网威胁情报知识图谱中潜在关系的挖掘[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 24-31. |
[11] | 吕学强, 王涛, 游新冬, 徐戈. 层次融合多元知识的命名实体识别框架——HTLR[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 40-47. |
[12] | 薛桂香, 王辉, 周卫峰, 刘瑜, 李岩. 基于知识图谱和时空扩散图卷积网络的港口交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2952-2957. |
[13] | 武杰, 张安思, 吴茂东, 张仪宗, 王从宝. 知识图谱在装备故障诊断领域的研究与应用综述[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2651-2659. |
[14] | 赵宇博, 张丽萍, 闫盛, 侯敏, 高茂. 基于改进分段卷积神经网络和知识蒸馏的学科知识实体间关系抽取[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2421-2429. |
[15] | 李健京, 李贯峰, 秦飞舟, 李卫军. 基于不确定知识图谱嵌入的多关系近似推理模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1751-1759. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||