《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (6): 1776-1783.DOI: 10.11772/j.issn.1001-9081.2024070930
• 第十二届CCF大数据学术会议 • 上一篇
李岚皓1,2, 严皓钧1, 周号益1,3(), 孙庆赟1,2, 李建欣1,2
收稿日期:
2024-07-04
修回日期:
2024-10-21
接受日期:
2024-10-22
发布日期:
2024-12-04
出版日期:
2025-06-10
通讯作者:
周号益
作者简介:
李岚皓(1997—),男,辽宁鞍山人,博士研究生,CCF会员,主要研究方向:时序数据分析基金资助:
Lanhao LI1,2, Haojun YAN1, Haoyi ZHOU1,3(), Qingyun SUN1,2, Jianxin LI1,2
Received:
2024-07-04
Revised:
2024-10-21
Accepted:
2024-10-22
Online:
2024-12-04
Published:
2025-06-10
Contact:
Haoyi ZHOU
About author:
LI Lanhao, born in 1997, Ph. D. candidate. His research interests include time series data analysis.Supported by:
摘要:
时间序列数据广泛来源于社会各个领域,从气象学到金融学再到医学,准确的长期预测是时间序列数据分析、处理与研究中的一个关键问题。针对时间序列数据中存在的不同尺度相关性的挖掘与利用,提出一种基于神经网络的多尺度信息融合时间序列长期预测模型ScaleNN,旨在更好地处理时间序列数据中的多尺度问题,从而实现更准确的长期预测。首先,结合全连接神经网络和卷积神经网络,有效提取全局信息与局部信息,并将2种信息聚合后进行预测;其次,通过在全局信息表征模块中引入压缩机制,以更轻量化的结构接受更长的序列输入,增大模型的感知范围并提高模型效能。大量实验结果表明,ScaleNN在多个真实世界数据集上的性能优于当前该领域的优秀模型PatchTST (Patch Time Series Transformer),在运行时间降低35%的同时仅需19%的参数量。可见,ScaleNN可广泛应用于不同领域的时间序列预测问题,为交通流量预测、天气预报等领域提供预测的基础。
中图分类号:
李岚皓, 严皓钧, 周号益, 孙庆赟, 李建欣. 基于神经网络的多尺度信息融合时间序列长期预测模型[J]. 计算机应用, 2025, 45(6): 1776-1783.
Lanhao LI, Haojun YAN, Haoyi ZHOU, Qingyun SUN, Jianxin LI. Multi-scale information fusion time series long-term forecasting model based on neural network[J]. Journal of Computer Applications, 2025, 45(6): 1776-1783.
数据集 | 特征数 | 时间步 | 细粒度/min |
---|---|---|---|
ETTm1 | 7 | 69 680 | 15 |
ETTm2 | 7 | 69 680 | 15 |
ETTh1 | 7 | 17 420 | 60 |
ETTh2 | 7 | 17 420 | 60 |
Weather | 21 | 52 696 | 10 |
ECL | 321 | 26 304 | 60 |
表1 数据集统计信息
Tab. 1 Statistics of datasets
数据集 | 特征数 | 时间步 | 细粒度/min |
---|---|---|---|
ETTm1 | 7 | 69 680 | 15 |
ETTm2 | 7 | 69 680 | 15 |
ETTh1 | 7 | 17 420 | 60 |
ETTh2 | 7 | 17 420 | 60 |
Weather | 21 | 52 696 | 10 |
ECL | 321 | 26 304 | 60 |
数据集 | 预测长度 | ScaleNN | PatchTST | DLinear | MICN | FEDformer | Autoformer | Pyraformer | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | ||
Weather | 96 | 0.148 | 0.188 | 0.176 | 0.237 | 0.161 | 0.229 | 0.238 | 0.314 | 0.249 | 0.329 | 0.896 | 0.556 | ||
192 | 0.190 | 0.231 | 0.220 | 0.282 | 0.220 | 0.281 | 0.275 | 0.329 | 0.325 | 0.370 | 0.622 | 0.624 | |||
336 | 0.242 | 0.282 | 0.265 | 0.319 | 0.278 | 0.331 | 0.339 | 0.377 | 0.351 | 0.391 | 0.739 | 0.753 | |||
720 | 0.311 | 0.323 | 0.314 | 0.323 | 0.362 | 0.311 | 0.356 | 0.389 | 0.409 | 0.415 | 0.426 | 1.004 | 0.934 | ||
ETTh1 | 96 | 0.365 | 0.395 | 0.370 | 0.400 | 0.375 | 0.399 | 0.398 | 0.427 | 0.376 | 0.415 | 0.435 | 0.446 | 0.664 | 0.612 |
192 | 0.413 | 0.429 | 0.405 | 0.416 | 0.430 | 0.453 | 0.423 | 0.446 | 0.456 | 0.457 | 0.790 | 0.681 | |||
336 | 0.445 | 0.422 | 0.440 | 0.439 | 0.440 | 0.460 | 0.444 | 0.462 | 0.486 | 0.487 | 0.891 | 0.738 | |||
720 | 0.440 | 0.459 | 0.472 | 0.490 | 0.491 | 0.509 | 0.469 | 0.492 | 0.515 | 0.517 | 0.963 | 0.782 | |||
ETTh2 | 96 | 0.273 | 0.336 | 0.336 | 0.289 | 0.353 | 0.299 | 0.364 | 0.332 | 0.374 | 0.332 | 0.368 | 0.645 | 0.597 | |
192 | 0.339 | 0.378 | 0.339 | 0.383 | 0.418 | 0.422 | 0.441 | 0.407 | 0.446 | 0.426 | 0.434 | 0.788 | 0.683 | ||
336 | 0.329 | 0.384 | 0.448 | 0.465 | 0.447 | 0.474 | 0.400 | 0.447 | 0.477 | 0.479 | 0.907 | 0.747 | |||
720 | 0.379 | 0.422 | 0.605 | 0.551 | 0.442 | 0.467 | 0.412 | 0.469 | 0.453 | 0.490 | 0.963 | 0.783 | |||
ETTm1 | 96 | 0.285 | 0.333 | 0.299 | 0.343 | 0.316 | 0.362 | 0.326 | 0.390 | 0.510 | 0.492 | 0.543 | 0.510 | ||
192 | 0.326 | 0.359 | 0.369 | 0.335 | 0.363 | 0.390 | 0.365 | 0.415 | 0.514 | 0.495 | 0.557 | 0.537 | |||
336 | 0.359 | 0.381 | 0.392 | 0.369 | 0.408 | 0.426 | 0.392 | 0.425 | 0.510 | 0.492 | 0.754 | 0.655 | |||
720 | 0.415 | 0.416 | 0.425 | 0.421 | 0.459 | 0.464 | 0.446 | 0.458 | 0.527 | 0.493 | 0.908 | 0.724 | |||
ETTm2 | 96 | 0.160 | 0.245 | 0.167 | 0.260 | 0.179 | 0.275 | 0.180 | 0.271 | 0.205 | 0.293 | 0.435 | 0.507 | ||
192 | 0.216 | 0.285 | 0.224 | 0.303 | 0.262 | 0.326 | 0.252 | 0.318 | 0.278 | 0.336 | 0.730 | 0.673 | |||
336 | 0.266 | 0.319 | 0.281 | 0.342 | 0.305 | 0.353 | 0.324 | 0.364 | 0.343 | 0.379 | 1.201 | 0.845 | |||
720 | 0.352 | 0.375 | 0.397 | 0.421 | 0.389 | 0.407 | 0.410 | 0.420 | 0.414 | 0.419 | 3.625 | 1.451 | |||
ECL | 96 | 0.129 | 0.222 | 0.140 | 0.237 | 0.164 | 0.269 | 0.186 | 0.302 | 0.196 | 0.313 | 0.386 | 0.449 | ||
192 | 0.147 | 0.147 | 0.240 | 0.153 | 0.249 | 0.177 | 0.285 | 0.197 | 0.311 | 0.211 | 0.324 | 0.386 | 0.443 | ||
336 | 0.163 | 0.163 | 0.259 | 0.169 | 0.267 | 0.193 | 0.304 | 0.213 | 0.328 | 0.214 | 0.327 | 0.378 | 0.443 | ||
720 | 0.197 | 0.290 | 0.203 | 0.301 | 0.212 | 0.321 | 0.233 | 0.344 | 0.236 | 0.342 | 0.376 | 0.445 |
表2 ScaleNN和基线模型在真实数据集上的长期预测结果
Tab. 2 Long-term prediction results of ScaleNN and baseline models on real datasets
数据集 | 预测长度 | ScaleNN | PatchTST | DLinear | MICN | FEDformer | Autoformer | Pyraformer | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | ||
Weather | 96 | 0.148 | 0.188 | 0.176 | 0.237 | 0.161 | 0.229 | 0.238 | 0.314 | 0.249 | 0.329 | 0.896 | 0.556 | ||
192 | 0.190 | 0.231 | 0.220 | 0.282 | 0.220 | 0.281 | 0.275 | 0.329 | 0.325 | 0.370 | 0.622 | 0.624 | |||
336 | 0.242 | 0.282 | 0.265 | 0.319 | 0.278 | 0.331 | 0.339 | 0.377 | 0.351 | 0.391 | 0.739 | 0.753 | |||
720 | 0.311 | 0.323 | 0.314 | 0.323 | 0.362 | 0.311 | 0.356 | 0.389 | 0.409 | 0.415 | 0.426 | 1.004 | 0.934 | ||
ETTh1 | 96 | 0.365 | 0.395 | 0.370 | 0.400 | 0.375 | 0.399 | 0.398 | 0.427 | 0.376 | 0.415 | 0.435 | 0.446 | 0.664 | 0.612 |
192 | 0.413 | 0.429 | 0.405 | 0.416 | 0.430 | 0.453 | 0.423 | 0.446 | 0.456 | 0.457 | 0.790 | 0.681 | |||
336 | 0.445 | 0.422 | 0.440 | 0.439 | 0.440 | 0.460 | 0.444 | 0.462 | 0.486 | 0.487 | 0.891 | 0.738 | |||
720 | 0.440 | 0.459 | 0.472 | 0.490 | 0.491 | 0.509 | 0.469 | 0.492 | 0.515 | 0.517 | 0.963 | 0.782 | |||
ETTh2 | 96 | 0.273 | 0.336 | 0.336 | 0.289 | 0.353 | 0.299 | 0.364 | 0.332 | 0.374 | 0.332 | 0.368 | 0.645 | 0.597 | |
192 | 0.339 | 0.378 | 0.339 | 0.383 | 0.418 | 0.422 | 0.441 | 0.407 | 0.446 | 0.426 | 0.434 | 0.788 | 0.683 | ||
336 | 0.329 | 0.384 | 0.448 | 0.465 | 0.447 | 0.474 | 0.400 | 0.447 | 0.477 | 0.479 | 0.907 | 0.747 | |||
720 | 0.379 | 0.422 | 0.605 | 0.551 | 0.442 | 0.467 | 0.412 | 0.469 | 0.453 | 0.490 | 0.963 | 0.783 | |||
ETTm1 | 96 | 0.285 | 0.333 | 0.299 | 0.343 | 0.316 | 0.362 | 0.326 | 0.390 | 0.510 | 0.492 | 0.543 | 0.510 | ||
192 | 0.326 | 0.359 | 0.369 | 0.335 | 0.363 | 0.390 | 0.365 | 0.415 | 0.514 | 0.495 | 0.557 | 0.537 | |||
336 | 0.359 | 0.381 | 0.392 | 0.369 | 0.408 | 0.426 | 0.392 | 0.425 | 0.510 | 0.492 | 0.754 | 0.655 | |||
720 | 0.415 | 0.416 | 0.425 | 0.421 | 0.459 | 0.464 | 0.446 | 0.458 | 0.527 | 0.493 | 0.908 | 0.724 | |||
ETTm2 | 96 | 0.160 | 0.245 | 0.167 | 0.260 | 0.179 | 0.275 | 0.180 | 0.271 | 0.205 | 0.293 | 0.435 | 0.507 | ||
192 | 0.216 | 0.285 | 0.224 | 0.303 | 0.262 | 0.326 | 0.252 | 0.318 | 0.278 | 0.336 | 0.730 | 0.673 | |||
336 | 0.266 | 0.319 | 0.281 | 0.342 | 0.305 | 0.353 | 0.324 | 0.364 | 0.343 | 0.379 | 1.201 | 0.845 | |||
720 | 0.352 | 0.375 | 0.397 | 0.421 | 0.389 | 0.407 | 0.410 | 0.420 | 0.414 | 0.419 | 3.625 | 1.451 | |||
ECL | 96 | 0.129 | 0.222 | 0.140 | 0.237 | 0.164 | 0.269 | 0.186 | 0.302 | 0.196 | 0.313 | 0.386 | 0.449 | ||
192 | 0.147 | 0.147 | 0.240 | 0.153 | 0.249 | 0.177 | 0.285 | 0.197 | 0.311 | 0.211 | 0.324 | 0.386 | 0.443 | ||
336 | 0.163 | 0.163 | 0.259 | 0.169 | 0.267 | 0.193 | 0.304 | 0.213 | 0.328 | 0.214 | 0.327 | 0.378 | 0.443 | ||
720 | 0.197 | 0.290 | 0.203 | 0.301 | 0.212 | 0.321 | 0.233 | 0.344 | 0.236 | 0.342 | 0.376 | 0.445 |
数据集 | 预测 长度 | ScaleNN | 去掉局部感知 模块的ScaleNN | 去掉全局感知 模块的ScaleNN | |||
---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | ||
Weather | 96 | 0.148 | 0.188 | 0.175 | 0.211 | 0.181 | 0.212 |
192 | 0.190 | 0.231 | 0.225 | 0.254 | 0.229 | 0.254 | |
336 | 0.242 | 0.283 | 0.276 | 0.294 | 0.281 | 0.293 | |
720 | 0.311 | 0.323 | 0.352 | 0.345 | 0.354 | 0.342 | |
ETTh1 | 96 | 0.365 | 0.395 | 0.392 | 0.402 | 0.378 | 0.393 |
192 | 0.409 | 0.425 | 0.447 | 0.430 | 0.437 | 0.424 | |
336 | 0.423 | 0.445 | 0.487 | 0.448 | 0.478 | 0.440 | |
720 | 0.440 | 0.459 | 0.480 | 0.468 | 0.474 | 0.459 | |
ETTh2 | 96 | 0.273 | 0.336 | 0.292 | 0.340 | 0.289 | 0.334 |
192 | 0.339 | 0.378 | 0.364 | 0.385 | 0.364 | 0.382 | |
336 | 0.357 | 0.398 | 0.385 | 0.407 | 0.376 | 0.399 | |
720 | 0.393 | 0.427 | 0.418 | 0.436 | 0.404 | 0.424 | |
ETTm1 | 96 | 0.285 | 0.333 | 0.316 | 0.346 | 0.311 | 0.340 |
192 | 0.326 | 0.359 | 0.366 | 0.372 | 0.369 | 0.370 | |
336 | 0.359 | 0.381 | 0.402 | 0.396 | 0.397 | 0.392 | |
720 | 0.421 | 0.415 | 0.467 | 0.435 | 0.465 | 0.430 | |
ETTm2 | 96 | 0.160 | 0.245 | 0.177 | 0.253 | 0.173 | 0.250 |
192 | 0.216 | 0.285 | 0.243 | 0.296 | 0.239 | 0.294 | |
336 | 0.266 | 0.319 | 0.301 | 0.335 | 0.299 | 0.333 | |
720 | 0.352 | 0.375 | 0.396 | 0.391 | 0.394 | 0.390 | |
ECL | 96 | 0.131 | 0.226 | 0.170 | 0.258 | 0.184 | 0.263 |
192 | 0.148 | 0.243 | 0.190 | 0.272 | 0.189 | 0.271 | |
336 | 0.163 | 0.263 | 0.206 | 0.288 | 0.205 | 0.286 | |
720 | 0.198 | 0.293 | 0.246 | 0.321 | 0.245 | 0.319 |
表3 ScaleNN 结构的消融实验结果
Tab. 3 Ablation study results of ScaleNN structure
数据集 | 预测 长度 | ScaleNN | 去掉局部感知 模块的ScaleNN | 去掉全局感知 模块的ScaleNN | |||
---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | ||
Weather | 96 | 0.148 | 0.188 | 0.175 | 0.211 | 0.181 | 0.212 |
192 | 0.190 | 0.231 | 0.225 | 0.254 | 0.229 | 0.254 | |
336 | 0.242 | 0.283 | 0.276 | 0.294 | 0.281 | 0.293 | |
720 | 0.311 | 0.323 | 0.352 | 0.345 | 0.354 | 0.342 | |
ETTh1 | 96 | 0.365 | 0.395 | 0.392 | 0.402 | 0.378 | 0.393 |
192 | 0.409 | 0.425 | 0.447 | 0.430 | 0.437 | 0.424 | |
336 | 0.423 | 0.445 | 0.487 | 0.448 | 0.478 | 0.440 | |
720 | 0.440 | 0.459 | 0.480 | 0.468 | 0.474 | 0.459 | |
ETTh2 | 96 | 0.273 | 0.336 | 0.292 | 0.340 | 0.289 | 0.334 |
192 | 0.339 | 0.378 | 0.364 | 0.385 | 0.364 | 0.382 | |
336 | 0.357 | 0.398 | 0.385 | 0.407 | 0.376 | 0.399 | |
720 | 0.393 | 0.427 | 0.418 | 0.436 | 0.404 | 0.424 | |
ETTm1 | 96 | 0.285 | 0.333 | 0.316 | 0.346 | 0.311 | 0.340 |
192 | 0.326 | 0.359 | 0.366 | 0.372 | 0.369 | 0.370 | |
336 | 0.359 | 0.381 | 0.402 | 0.396 | 0.397 | 0.392 | |
720 | 0.421 | 0.415 | 0.467 | 0.435 | 0.465 | 0.430 | |
ETTm2 | 96 | 0.160 | 0.245 | 0.177 | 0.253 | 0.173 | 0.250 |
192 | 0.216 | 0.285 | 0.243 | 0.296 | 0.239 | 0.294 | |
336 | 0.266 | 0.319 | 0.301 | 0.335 | 0.299 | 0.333 | |
720 | 0.352 | 0.375 | 0.396 | 0.391 | 0.394 | 0.390 | |
ECL | 96 | 0.131 | 0.226 | 0.170 | 0.258 | 0.184 | 0.263 |
192 | 0.148 | 0.243 | 0.190 | 0.272 | 0.189 | 0.271 | |
336 | 0.163 | 0.263 | 0.206 | 0.288 | 0.205 | 0.286 | |
720 | 0.198 | 0.293 | 0.246 | 0.321 | 0.245 | 0.319 |
1 | BROCKWELL P J, DAVIS R A. Time series: theory and methods, SSS[M]. New York: Springer, 1991: 1-2. |
2 | ELMUNIM N, ABDULLAH M, HASBI A M, et al. Comparison of statistical Holt-Winter models for forecasting the ionospheric delay using GPS observations[J]. Indian Journal of Radio and Space Physics, 2015, 44(1): 28-34. |
3 | RODRIGUES P M M, GOUVEIA P M D C B. An application of PAR models for tourism forecasting [J]. Tourism Economics, 2004, 10(3): 281-303. |
4 | KAUR J, PARMAR K S, SINGH S. Autoregressive models in environmental forecasting time series: a theoretical and application review [J]. Environmental Science and Pollution Research, 2023, 30(8): 19617-19641. |
5 | AGANA N A, HOMAIFAR A. EMD-based predictive deep belief network for time series prediction: an application to drought forecasting [J]. Hydrology, 2018, 5(1): No.18. |
6 | 洪永淼,汪寿阳. 大数据、机器学习与统计学:挑战与机遇[J]. 计量经济学报, 2021, 1(1):17-35. |
HONG Y M, WANG S Y. Big data, machine learning and statistics: challenges and opportunities[J]. China Journal of Econometrics, 2021, 1(1):17-35. | |
7 | ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179-211. |
8 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
9 | POPESCU M C, BALAS V E, PERESCU-POPESCU L, et al. Multilayer perceptron and neural networks[J]. WSEAS Transactions on Circuits and Systems, 2009, 8(7): 579-588. |
10 | ZHOU H, ZHANG S, PENG J, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 11106-11115. |
11 | WU H, XU J, WANG J, et al. Autoformer: decomposition transformers with auto-correlation for long-term series forecasting[C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2021: 22419-22430. |
12 | ZENG A, CHEN M, ZHANG L, et al. Are Transformers effective for time series forecasting?[C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 11121-11128. |
13 | NIE Y, NGUYEN N H, SINTHONG P, et al. A time series is worth 64 words: long-term forecasting with Transformers [EB/OL]. [2024-06-22].. |
14 | KIM T, KIM J, TAE Y, et al. Reversible instance normalization for accurate time-series forecasting against distribution shift[EB/OL]. [2024-06-22].. |
15 | ZHOU T, MA Z, WEN Q, et al. FEDformer: frequency enhanced decomposed Transformer for long-term series forecasting[C]// Proceedings of the 39th International Conference on Machine Learning. New York: JMLR.org, 2022: 27268-27286. |
16 | TAYLOR S J, LETHAM B. Forecasting at scale[J]. The American Statistician, 2018, 72(1): 37-45. |
17 | GRAVES A. Long short-term memory[M]// Supervised sequence labelling with recurrent neural networks, SCI 385. Berlin: Springer, 2012: 37-45. |
18 | CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. [2024-06-22].. |
19 | LI S, JIN X, XUAN Y, et al. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 5243-5253. |
20 | LIU S, YU H, LIAO C, et al. Pyraformer: low-complexity pyramidal attention for long-range time series modeling and forecasting [EB/OL]. [2024-06-22].. |
21 | CAI W, LIANG Y, LIU X, et al. MSGNet: learning multi-scale inter-series correlations for multivariate time series forecasting[C]// Proceedings of the 38th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2024: 11141-11149. |
22 | WANG H, PENG J, HUANG F, et al. MICN: multi-scale local and global context modeling for long-term series forecasting [EB/OL]. [2024-06-22].. |
23 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. [2024-06-22].. |
24 | LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. |
25 | CIRSTEA R G, GUO C, YANG B, et al. Triformer: triangular, variable-specific attentions for long sequence multivariate time series forecasting[C]// Proceedings of the 31st International Joint Conference on Artificial Intelligence. California: ijcai.org, 2022: 1994-2001. |
26 | CHEN P, ZHANG Y, CHENG Y, et al. Pathformer: multi-scale Transformers with adaptive pathways for time series forecasting[EB/OL]. [2024-06-22].. |
27 | ZHONG S, SONG S, ZHUO W, et al. A multi-scale decomposition MLP-mixer for time series analysis[EB/OL]. [2024-06-22].. |
28 | HOU H, YU F R. RWKV-TS: beyond traditional recurrent neural network for time series tasks[EB/OL]. [2024-06-22].. |
29 | GONG Z, TANG Y, LIANG J. PatchMixer: a patch-mixing architecture for long-term time series forecasting [EB/OL]. [2024-06-22].. |
30 | ZHOU T, NIU P, WANG X, et al. One fits all: universal time series analysis by pretrained LM and specially designed adaptors[EB/OL]. [2024-06-22].. |
[1] | 陈凯, 叶海良, 曹飞龙. 基于局部-全局交互与结构Transformer的点云分类算法[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1671-1676. |
[2] | 牛四杰, 刘昱良. 基于知识蒸馏双分支结构的视网膜病变辅助诊断方法[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1410-1414. |
[3] | 王文鹏, 秦寅畅, 师文轩. 工业缺陷检测无监督深度学习方法综述[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1658-1670. |
[4] | 李雪莹, 杨琨, 涂国庆, 刘树波. 基于局部增强的时序数据对抗样本生成方法[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1573-1581. |
[5] | 王丹, 张文豪, 彭丽娟. 基于深度学习的智能反射面辅助通信系统信道估计[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1613-1618. |
[6] | 潘理虎, 彭守信, 张睿, 薛之洋, 毛旭珍. 面向运动前景区域的视频异常检测[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1300-1309. |
[7] | 王一丁, 王泽浩, 李耀利, 蔡少青, 袁媛. 多尺度2D-Adaboost的中药材粉末显微图像识别算法[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1325-1332. |
[8] | 杨光局, 罗天健, 王开军, 杨思琪. 多分支多视图的时间序列上下文对比表征学习方法[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1042-1052. |
[9] | 周阳, 李辉. 基于语义和细节特征双促进的遥感影像建筑物提取网络[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1310-1316. |
[10] | 薛振华, 李强, 黄超. 视觉基础模型驱动的像素级图像异常检测方法[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 823-831. |
[11] | 陈瑞龙, 胡涛, 卜佑军, 伊鹏, 胡先君, 乔伟. 面向加密恶意流量检测模型的堆叠集成对抗防御方法[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 864-871. |
[12] | 张倩婷, 胡丽莹, 陈黎飞. 时间序列的鲁棒形态表征方法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 436-443. |
[13] | 洪梓榕, 包广清. 基于集成学习的雷达自动目标识别综述[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 371-382. |
[14] | 张翰林, 王俊陆, 宋宝燕. 融合衍生特征的时间序列事件分类方法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 428-435. |
[15] | 张众维, 王俊, 刘树东, 王志恒. 多尺度特征融合与加权框融合的遥感图像目标检测[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 633-639. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||