[1] HAN J, KAMBER M, PEI J. Data Mining:Concepts and Techniques[M]. 3rd ed. San Francisco:Margan Kaufmann, 2011:525-527. [2] LEE D D, HSEBASTIAN S S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401:788-791. [3] CESARIO E, MANCO G, ORTALE R. Top-down parameter-free clustering of high-dimensional categorical data[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(12):1607-1624. [4] SHI J, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905. [5] FREY B J, DUECK D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814):972-976. [6] CAI D, HE X, HAN J, et al. Graph regularized nonnegative matrix factorization for data representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1548-1560. [7] BISHOP C M. Pattern Recognition and Machine Learning[M]. 2nd ed. New York:Springer, 2010:291-292. [8] HOYER P O. Non-negative matrix factorization with sparseness constraints[EB/OL].[2018-05-10]. https://arxiv.org/abs/cs/0408058. [9] DU L, LI X, SHEN Y. Robust nonnegative matrix factorization via half-quadratic minimization[C]//Proceedings of the 2012 IEEE 12th International Conference on Data Mining. Piscataway, NJ:IEEE, 2012:201-210. [10] XU W, GONG Y. Document clustering by concept factorization[C]//SIGIR 2004:Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2004:202-209. [11] CAI D, HE X, HAN J. Locally consistent concept factorization for document clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(6):902-913. [12] PEI X, CHEN C, GONG W. Concept factorization with adaptive neighbors for document clustering[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(2):343-352. [13] LEE D D, SEUNG H S. Algorithms for non-negative matrix factorization[EB/OL].[2018-05-10]. http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf. [14] KUMAR A, RAI P, DAUMÉ H. Co-regularized multi-view spectral clustering[EB/OL].[2018-05-10]. http://www.cs.utah.edu/~piyush/recent/spectral-nips11.pdf. [15] DU L, ZHOU P, SHI L, et al. Robust multiple kernel k-means clustering using L21-norm[C]//Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2015:3476-3482. [16] LI X, SHEEN X, SHU Z, et al. Graph regularized multilayer concept factorization for data representation[J]. Neurocomputing, 2017, 238:139-151. [17] ZHAN K, SHI J, WANG J, et al. Adaptive structure concept factorization for multiview clustering[J]. Neural Computation, 2018, 30(2):1080-1103. [18] SHU Z, WU X, HUANG P, et al. Multiple graph regularized concept factorization with adaptive weights[J]. IEEE Access, 2018, 6:64938-64945. [19] MA S, ZHANG L, HU E, et al. Self-representative manifold concept factorization with adaptive neighbors for clustering[C]//IJCAI 2018:Proceedings of the 27th International Joint Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2018:2539-2545. [20] KUMAR A, RAI P, DAUMÉ H, Ⅲ. Co-regularized multi-view spectral clustering[C]//NIPS 2011:Proceedings of the 24th International Conference on Neural Information Processing Systems. New York:ACM, 2011:1413-1421. [21] YAN W, ZHANG B, MA S, et al. A novel regularized concept factorization for document clustering[J]. Knowledge-based Systems, 2017, 135:147-158. |