[1] 何扬名,杜建强,肖贤波.基于区域深度特征的人头检测方法[J].微电子学与计算机,2013,30(11):39-42.(HE Y M, DU J Q, XIAO X B. Detecting human head by depth characteristics of regions[J]. Microelectronics & Computer, 2013, 30(11):39-42.) [2] 夏菁菁,高琳,范勇,等.基于骨架特征的人数统计[J].计算机应用,2014,34(2):585-588.(XIA J J, GAO L, FAN Y, et al. People counting based on skeleton feature[J]. Journal of Computer Applications, 2014, 34(2):585-588.) [3] 叶锋,洪斯婷,郑德城,等.基于Adaboost与背景差分级联的室内人数统计方法[J].福建师范大学学报(自然科学版),2017,33(1):7-13.(YE F, HONG S T, ZHENG D C, et al. A people counting method based on Adaboost and background subtraction in indoor environment[J]. Journal of Fujian Normal University (Natural Science Edition), 2017, 33(1):7-13.) [4] 张晓琪,宋钢.基于多特征协同的人头检测新方法[J].西南师范大学学报(自然科学版),2018,43(7):46-52.(ZHANG X Q, SONG G. A new head detection method oriented for vertical monocular camera way[J].Journal of Southwest China Normal University (Natural Science Edition), 2018, 43(7):46-52.) [5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2014:580-587. [6] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Washington, DC:IEEE Computer Society, 2015:1440-1448. [7] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[C]//NIPS 2015:Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2015:91-99. [8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:779-788. [9] LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham:Springer, 2016:21-37. [10] 王黎,陆慧娟,叶敏超,等.Faster R-CNN的癌症影像检测方法[J].中国计量大学学报,2018,29(2):136-141.(WANG L, LU H J, YE M C, et al. A cancer image detection method based on Faster R-CNN[J]. Journal of China University of Metrology, 2018, 29(2):136-141.) [11] HUANG W Q, HUANG M Z, ZHANG Y T. Detection of traffic signs based on combination of GAN and faster R-CNN[J].Journal of Physics:Conference Series, 2018, 1069(1):012159. [12] 戴陈卡,李毅.基于Faster R-CNN以及多部件结合的机场场面静态飞机检测[J].计算机应用,2017,37(z2):85-88.(DAI C K, LI Y. Aeroplane detection in static aerodrome based on faster R-CNN and multi-part model[J]. Journal of Computer Applications, 2017, 37(z2):85-88.) [13] 胡炎,单子力,高峰.基于Faster R-CNN和多分辨率SAR的海上舰船目标检测[J].无线电工程,2018,48(2):96-100.(HU Y, SHAN Z L, GAO F. Ship detection based on Faster R-CNN and multiresolution SAR[J]. Radio Engineering, 2018, 48(2):96-100.) [14] UIJLINGS J R R, van de SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171. [15] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//NIPS 2012:Proceedings of the 25th International Conference on Neural Information Processing Systems. North Miami Beach, FL:Curran Associates Inc., 2012:1097-1105. [16] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv Preprint, 2014, 2014:arXiv. 1409.1556. [17] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2015:1-9. [18] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2016:770-778. [19] 彭刚,杨诗琪,黄心汉,等.改进的基于区域卷积神经网络的微操作系统目标检测方法[J].模式识别与人工智能,2018,31(2):142-149.(PENG G, YANG S Q, HUANG X H, et al. Improved object detection method of micro-operating system based on region convolutional neural network[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(2):142-149.) [20] LIENHART R, MAYDT J. An extended set of Haar-like features for rapid object detection[C]//Proceedings of the 2002 International Conference on Image Processing. Piscataway, NJ:IEEE, 2002:900-903. [21] NEUBECK A, van GOOL L. Efficient non-maximum suppression[C]//ICPR 2006:Proceedings of the 18th International Conference on Pattern Recognition. Washington, DC:IEEE Computer Society, 2006:850-855. [22] 李嘉璇.TensorFlow技术解析与实战[M].北京:人民邮电出版社,2017:12-16.(LI J X. TensorFlow Technology Analysis and Practice[M]. Beijing:Posts and Telecom Press, 2017:12-16.) [23] EVERINGHAM M, van GOOL L, WILLIAMS C K I, et al. The pascal Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338. [24] 刘长龙.Python高效开发实战:Django、Tornado、Flask、Twisted[M].北京:电子工业出版社,2016:175-177.(LIU C L. Efficient Python Development Practices:Django, Tornado, Flask, Twisted[M]. Beijing:Publishing House of Electronics Industry, 2016:175-177.) |