[1] DESHPANDE M, KARRYPIS G. Item-based Top-N recommendation algorithms[J]. ACM Transactions on Information Systems, 2004, 22(1):143-177. [2] JUNG K Y, HWANG H J, KANG U G. Constructing full matrix through Naive Bayesian for collaborative filtering[C]//Proceedings of the 2006 International Conference on Intelligent Computing, LNCS 4114. Berlin:Springer, 2006:1210-1215. [3] GOLDBERG D, NICHOLS D, OKI B M, et al. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992, 35(12):61-70. [4] BREESE B J S, HECKERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[C]//Proceedings of the 4th Conference on Uncertainty in Artificial Intelligence, 1998:43-52. [5] 邓爱林,朱扬勇,施伯乐. 基于项目评分预测的协同过滤推荐算法[J]. 软件学报, 2003, 14(9):1621-1628. (DENG A L, ZHU Y Y, SHI B L. A collaborative filtering recommendation algorithm based on item rating prediction[J]. Journal of Software, 2003, 14(9):1621-1628.) [6] 邵煜,谢颖华. 协同过滤算法中冷启动问题研究[J]. 计算机系统应用, 2019, 28(2):246-252. (SHAO Y, XIE Y H. Research on cold-start problem of collaborative filtering algorithm[J]. Computer Systems & Applications, 2019, 28(2):246-252.) [7] LE T M V, LAUW H W. Probabilistic latent document network embedding[C]//Proceedings of the 2014 IEEE International Conference on Data Mining. Piscataway:IEEE, 2014:270-279. [8] BOURIGAULT S, LAGNIER C, LAMPRIER S, et al. Learning social network embeddings for predicting information diffusion[C]//Proceedings of the 2014 IEEE International Conference on Data Mining. Piscataway:IEEE, 2014:393-402. [9] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk:online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2014:701-710. [10] XIE M, YIN H, XU F, et al. Graph-based metric embedding for next POI recommendation[C]//Proceedings of the 2016 International Conference on Web Information Systems Engineering, LNCS 10042. Berlin:Springer, 2016:207-222. [11] XIE M, YIN H, WANG H, et al. Learning graph-based POI embedding for location-based recommendation[C]//Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. New York:ACM, 2016:15-24. [12] DING R, CHEN Z. RecNet:a deep neural network for personalized POI recommendation in location-based social networks[J]. International Journal of Geographical Information Science, 2018, 32(8):1631-1648. [13] HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[J]. Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva, Switzerland:International World Wide Web Conferences Steering Committee, 2017:173-182. [14] WANG D, CUI P, ZHU W. Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference. New York:ACM, 2016:1225-1234. [15] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Advances in Neural Information Processing Systems 26. Cambridge, MA:MIT Press, 2013:3111-3119. [16] LUO C, ZHAN J, WANG L, et al. Cosine normalization:using cosine similarity instead of dot product in neural networks[EB/OL].[2019-03-20]. https://arxiv.org/pdf/1702.05870.pdf. [17] 高阳,余建伟. 判断矩阵标度扩展法在不同标度下的比较[J]. 统计与决策, 2007(20):152-154. (GAO Y, YU J W. Comparison of judgment matrix scale expansion method under different scales[J]. Statistics and Decision, 2007(20):152-154.) |