[1] 宋婉茹, 赵晴晴, 陈昌红, 等. 行人重识别研究综述[J]. 智能系统学报,2017,12(6):770-780.(SONG W R,ZHAO Q Q,CHEN C H,et al. Survey on pedestrian re-identification research[J]. CAAI Transactions on Intelligent Systems,2017,12(6):770-780.) [2] OJALA T,PIETIKÄINEN M,MÄENPÄÄ T. Multiresolution grayscale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):971-987. [3] SWAIN M J,BALLARD D H. Color indexing[J]. International Journal of Computer Vision,1991,7(1):11-32. [4] GRAY D,TAO H. Viewpoint invariant pedestrian recognition with an ensemble of localized features[C]//Proceedings of the 2008 European Conference on Computer Vision,LNCS 5302. Berlin:Springer,2008:262-275. [5] KVIATKOVSKY I,ADAM A,RIVLIN E. Color invariants for person reidentification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(7):1622-1634. [6] LI W,WANG X. Locally aligned feature transforms across views[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2013:3594-3601. [7] LIAO S,HU Y,ZHU X,et al. Person re-identification by local maximal occurrence representation and metric learning[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:2197-2206. [8] AHMED E,JONES M,MARKS T K. An improved deep learning architecture for person re-identification[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:3908-3916. [9] CHEN S,GUO C,LAI J. Deep ranking for person re-identification via joint representation learning[J]. IEEE Transactions on Image Processing,2016,25(5):2353-2367. [10] 陈兵, 查宇飞, 李运强, 等. 基于卷积神经网络判别特征学习的行人重识别[J]. 光学学报,2018,38(7):No. 0720001. (CHEN B,ZHA Y F,LI Y Q, et al. Person re-identification based on convolutional neural network discriminative feature learning[J]. Acta Optica Sinica,2018,38(7):No. 0720001.) [11] KÖSTINGER M,HIRZER M,WOHLHART P,et al. Large scale metric learning from equivalence constraints[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2012:2288-2295. [12] TAO D,GUO Y,SONG M,et al. Person re-identification by dualregularized kiss metric learning[J]. IEEE Transactions on Image Processing,2016,25(6):2726-2738. [13] PAISITKRIANGKRAI S, SHEN C, VAN DEN HENGEL A. Learning to rank in person re-identification with metric ensembles[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:1846-1855. [14] YI D,LEI Z,LIAO S,et al. Deep metric learning for person reidentification[C]//Proceedings of the 22nd International Conference on Pattern Recognition. Piscataway:IEEE,2014:34-39. [15] CHEN Y,ZHENG W,LAI J,et al. An asymmetric distance model for cross-view feature mapping in person reidentification[J]. IEEE Transactions on Circuits and Systems for Video Technology,2017,27(8):1661-1675. [16] PENG P,XIANG T,WANG Y,et al. Unsupervised cross-dataset transfer learning for person re-identification[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1306-1315. [17] YU H, WU A, ZHENG W. Cross-view asymmetric metric learning for unsupervised person re-identification[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:994-1002. [18] GENG M,WANG Y,XIANG T,et al. Deep transfer learning for person re-identification[EB/OL].[2019-10-18]. https://arxiv.org/pdf/1611.05244.pdf. [19] ZHU J Y,PARK T,ISOLA P,et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:2242-2251. [20] DENG W, ZHENG L, YE Q, et al. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:994-1003. [21] HUANG W,HU R,LIANG C,et al. Camera network based person re-identification by leveraging spatial-temporal constraint and multiple cameras relations[C]//Proceedings of the 2016 International Conference on Multimedia Modeling,LNCS 9516. Cham:Springer,2016:174-186. [22] MARTINEL N, FORESTI G L, MICHELONI C. Person reidentification in a distributed camera network framework[J]. IEEE Transactions on Cybernetics,2016,47(11):3530-3541. [23] LV J,CHEN W,LI Q,et al. Unsupervised cross-dataset person re-identification by transfer learning of spatial-temporal patterns[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:7948-7956. [24] ZHENG L, SHEN L, TIAN L, et al. Scalable person reidentification:a benchmark[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015:1116-1124. [25] RISTANI E,SOLERA F,ZOU R,et al. Performance measures and a data set for multi-target, multi-camera tracking[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9914. Cham:Springer,2016:17-35. [26] DENG J,DONG W,SOCHER R,et al. ImageNet:a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2009:248-255. [27] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [28] FAN H,ZHENG L,YAN C,et al. Unsupervised person reidentification:Clustering and fine-tuning[J]. ACM Transactions on Multimedia Computing,Communications,and Applications, 2018,14(4):No. 83. |