[1] BEN-DAVID S,BLITZER J,CRAMMER K,et al. A theory of learning from different domains[J]. Machine Learning,2010,79(1/2):151-175. [2] BILEN H, VEDALDI H. Weakly supervised deep detection networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:2846-2854. [3] LIU W,ANGUELOV D,ERHAN D,et al. SSD:single shot multibox detector[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9905. Cham:Springer, 2016:21-37. [4] BEN-DAVID S, BLITZER J, CRAMMER K, et al. Analysis ofrepresentations for domain adaptation[C]//Proceedings of the 19th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2006:134-147. [5] BUSTO P P, GALL J. Open set domain adaptation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:754-763. [6] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2014:2672-2680. [7] DENG J,DONG W,SOCHER R,et al. ImageNet:a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2009:248-255. [8] JIA Y,SHELHAMER E,DONAHUE J,et al. Caffe:convolutional architecture for fast feature embedding[C]//Proceedings of the 22nd ACM International Conference on Multimedia. New York:ACM,2014:675-678. [9] 蔡国永, 贺歆灏, 储阳阳. 图像整体与局部区域嵌入的视觉情感分析[J]. 计算机应用,2019,39(8):2181-2185.(CAI G Y,HE X H,CHU Y Y. Visual sentiment analysis by combining global and local regions of image[J]. Journal of Computer Applications, 2019,39(8):2181-2185.) [10] PAN S J,TSANG I W,KWORK J T,et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks,2011,22(2):199-210. [11] GANIN Y,USTINOVA E,AJAKAN H,et al. Domain adversarial training of neural networks[J]. Journal of Machine Learning Research,2016,17(59):1-35. [12] HE K,GKIOXARI G,DOLL′P,et al. Maximum independent domain adaptive[C]//Proceedings of the 2014 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2014:781-792. [13] HOFFMAN J,TZENG E,PARK T,et al. CyCADA:cycleconsistent adversarial domain adaptation[C]//Proceedings of the 35th International Conference on Machine Learning. New York:JMLR. org,2018:1989-1998. [14] LONG M,WANG J,DING G,et al. Transfer feature learning with joint distribution adaptation[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway:IEEE,2013:2200-2207. [15] CORDTS M,OMRAN M,RAMOS S,et al. The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:3213-3223. [16] FRENCH G,MACKIEWICZ M,FISHER M. Self-ensembling for visual domain adaptation[EB/OL].[2019-12-22]. https://arxiv.org/pdf/1706.05208.pdf. [17] CHEN Y,LI W,SAKARIDIS C,et al. Domain adaptive fasterRCNN for object detection in the wild[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:3339-3348. [18] TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:2962-2971. [19] YU C,WANG J,CHEN Y,et al. Transfer learning with dynamic adversarial adaptation network[C]//Proceedings of the 2019 IEEE International Conference on Data Mining. Piscataway:IEEE, 2019:778-786. [20] 陈龙杰, 张钰, 张玉梅, 等. 基于多注意力多尺度特征融合的图像描述生成算法[J]. 计算机应用,2019,39(2):354-359. (CHEN L J,ZHANG Y,ZHANG Y M,et al. Image caption generation algorithm based on multi-attention and multi-scale feature fusion[J]. Journal of Computer Applications,2019,39(2):354-359.) [21] 郭川磊, 何嘉. 基于转置卷积操作改进的单阶段多边框目标检测方法[J]. 计算机应用,2018,38(10):2833-2838.(GUO C L,HE J. Improved single shot multibox detector based on the transposed convolution[J]. Journal of Computer Applications, 2018,38(10):2833-2838.) [22] PEI Z, CAO Z, LONG M, et al. Multi-adversarial domain adaptation[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2018:3934-3941. [23] HOU S,WANG Z. Weighted channel dropout for regularization of deep convolutional neural network[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2019:8425-8432. |