[1] ZIMMERMANN C,BROX T. Learning to estimate 3D hand pose from single RGB images[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:4913-4921. [2] PANTELERIS P,OIKONOMIDIS I,ARGYROS A. Using a single RGB frame for real time 3D hand pose estimation in the wild[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway:IEEE,2018:436-445. [3] CAI Y,GE L,CAI J,et al. Weakly-supervised 3D hand pose estimation from monocular RGB images[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11210. Cham:Springer,2018:678-694. [4] GENG X,XIA Y. Head pose estimation based on multivariate label distribution[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2014:1837-1842. [5] YANG T Y,CHEN Y T,LIN Y Y,et al. FSA-Net:learning finegrained structure aggregation for head pose estimation from a single image[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:1087-1096. [6] XIA J,CAO L,ZHANG G,et al. Head pose estimation in the wild assisted by facial landmarks based on convolutional neural networks[J]. IEEE Access,2019,7:48470-48483. [7] TOMPSON J,STEIN M,LECUN Y,et al. Real-time continuous pose recovery of human hands using convolutional networks[J]. ACM Transactions on Graphics,2014,33(5):No. 169. [8] OBERWEGER M, WOHLHART P, LEPETIT V. Training a feedback loop for hand pose estimation[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:3316-3324. [9] OBERWEGER M,WOHLHART P,LEPETIT V. Hands deep in deep learning for hand pose estimation[EB/OL].[2020-03-03]. https://arxiv.org/pdf/1502.06807.pdf. [10] OBERWEGER M,LEPETIT V. DeepPrior++:improving fast and accurate 3D hand pose estimation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops. Piscataway:IEEE,2017:585-594. [11] GE L, LIANG H, YUAN J, et al. Robust 3D hand pose estimation in single depth images:from single-view CNN to multiview CNNs[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:3593-3601. [12] GE L,LIANG H,YUAN J,et al. 3D convolutional neural networks for efficient and robust hand pose estimation from single depth images[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:5679-5688. [13] GE L,CAI Y,WENG J,et al. Hand PointNet:3D hand pose estimation using point sets[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:8417-8426. [14] QI C R,SU H,MO K,et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:652-660. [15] QI C R,YI L,SU H,et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:5105-5114. [16] BOUCHACOURT D,KUMAR M P,NOWOZIN S. Disco Nets:dissimilarity coefficients networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc., 2016:352-360. [17] MOON G,YONG CHANG J,MU LEE K. V2V-PoseNet:voxelto-voxel prediction network for accurate 3D hand and human pose estimation from a single depth map[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:5079-5088. [18] 王旭鹏. 三维非刚性模型的特征检测描述与配准技术研究[J]. 计算机应用,2018,38(8):2381-2385.(WANG X P. Hierarchical approach for 3D non-rigid shape registration[J]. Journal of Computer Applications,2018,38(8):2381-2385.) [19] MOENNING C,DOGSON N A. Fast marching farthest point sampling for implicit surfaces and point clouds[R]. Cambridge:University of Cambridge Computer Laboratory,2003:565. [20] SUN X,WEI Y,LIANG S,et al. Cascaded hand pose regression[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:824-832. [21] TAYLOR J, SHOTTON J, SHARP T, et al. The Vitruvian manifold:inferring dense correspondences for one-shot human pose estimation[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2012:103-110. [22] WAN C,PROBST T,VAN GOOL L,et al. Crossing nets:combining GANs and VAEs with a shared latent space for hand pose estimation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:1196-1205. |