[1] LI S Z. Markov Random Field Modeling in Image Analysis[M]. London:Springer,2009:49-86. [2] ROTH S,BLACK M J. Fields of experts[J]. International Journal of Computer Vision,2009,82(2):Article No. 205. [3] MAIRAL J,BACH F,PONCE J,et al. Non-local sparse models for image restoration[C]//Proceedings of the IEEE 12th International Conference on Computer Vision. Piscataway:IEEE,2009:2272-2279. [4] XU J,ZHANG L,ZUO W,et al. Patch group based nonlocal selfsimilarity prior learning for image denoising[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:244-252. [5] SCHMIDT U, ROTH S. Shrinkage fields for effective image restoration[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2014:2774-2781. [6] GU S, ZHANG L, ZUO W, et al. Weighted nuclear norm minimization with application to image denoising[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2014:2862-2869. [7] DABOV K,FOI A,KATKOVNIK V,et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing,2007,16(8):2080-2095. [8] ZHANG K,ZUO W,CHEN Y,et al. Beyond a Gaussian denoiser:residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing,2017,26(7):3142-3155. [9] CHEN Y,YU W,POCK T,et al. On learning optimized reaction diffusion processes for effective image restoration[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:5261-5269. [10] CHEN Y,POCK T. Trainable nonlinear reaction diffusion:a flexible framework for fast and effective image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1256-1272. [11] 徐少平, 林珍玉, 陈孝国, 等. 采用多通道浅层CNN网络构建的多降噪器最优组合模型[J/OL]. 自动化学报:1-16.[2020-08-12]. https://doi.org/10.16383/j.aas.c190736.(XU S P, LIN Z Y, CHEN X G,et al. Optimal combination model of multiple denoisers constructed by multi-channel shallow CNN network[J/OL]. Acta Automatica Sinica:1-16.[2020-08-12]. https://doi.org/10.16383/j.aas.c190736.) [12] 陈清江, 石小涵, 柴昱洲. 基于小波变换与卷积神经网络的图像去噪算法[J]. 应用光学,2020,41(2):288-295.(CHEN Q J,SHI X H,CHAI Y Z. Image denoising algorithm based on wavelet transform and convolutional neural network[J]. Journal of Applied Optics,2020,41(2):288-295.) [13] 潘凯, 侯亮. 基于卷积神经网络的遥感图像降噪[J]. 现代信息科技,2020,4(12):60-65.(PAN K,HOU L. Denoise of remote sensing image based on convolutional neural network[J]. Modern Information Technology,2020,4(12):60-65.) [14] 杨飘. 基于区域分析的图像超分辨与降噪技术研究[D]. 成都:电子科技大学,2020:13-64.(YANG P. Research on image super-resolution and noise reduction technology based on area analysis[D]. Chengdu:University of Electronic Science and Technology of China,2020:13-64.) [15] 朱小方, 净亮, 邵党国. 基于反向传播神经网络的自适应双边滤波的超声图像降噪[J]. 激光与光电子学进展, 2020, 57(24):163-172. (ZHU X F,JING L,SHAO D G. Ultrasonic image denoising using adaptive bilateral filtering based on back propagation neural network[J]. Laser and Optoelectronics Progress,2020,57(24):163-172.) [16] ZHANG K,ZUO W,ZHANG L. FFDNet:toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing,2018,27(9):4608-4622. [17] CHOI J H,OMAR A. Optimal combination of image denoisers[J]. IEEE Transactions on Image Processing,2019,28(8):4016-4031 [18] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:1-9. [19] HEGAZY M A A,CHO M H,LEE S Y. Image denoising by transfer learning of generative adversarial network for dental CT[J]. Biomedical Physics and Engineering Express,2020,6(5):Article No. 055024. [20] RADOSLAY L. CSNET[J]. Proceedings of FPCA,2012,7(7):429-462. [21] 马红强, 马时平, 许悦雷, 等. 基于改进栈式稀疏去噪自编码器的自适应图像去噪[J]. 光学学报, 2018, 38(10):120-127. (MA H Q,MA S P,XU Y L, et al. Adaptive image denoising based on improved stacked sparse denoising auto-encoder[J]. Acta Optica Sinica,2018,38(10):120-127.) [22] GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al. Generative adversarial nets[C]//Proceedings of the 2014 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2014:2672-2680. [23] GAUTHIER J. Conditional generative adversarial nets for convolutional face generation[EB/OL].[2020-08-25]. http://www.foldl.me/uploads/papers/tr-cgans.pdf. [24] 郭恒意, 贾振堂. 结合残差密集块的卷积神经网络图像去噪方法[J]. 计算机工程与设计, 2020, 41(7):1998-2003.(GUO H Y,JIA Z T. Convolutional neural network image denoising method combined with dense residual block[J]. Computer Engineering and Design,2020,41(7):1998-2003.) [25] REDDI S J,KALE S,KUMAR S,et al. On the convergence of Adam and beyond[EB/OL].[2020-08-25]. https://arxiv.org/pdf/1904.09237.pdf. [26] LUO L,XIONG Y,LIU Y,et al. Adaptive gradient methods with dynamic bound of learning rate[EB/OL].[2020-08-25]. https://arxiv.org/pdf/1902.09843.pdf. [27] GOYAL P,DOLLÁR P,GIRSHICK R,et al. Accurate,large minibatch SGD:training ImageNet in 1 hour[EB/OL].[2020-08-26]. https://arxiv.org/pdf/1706.02677.pdf. [28] KESKAR N S,MUDIGERE D,NOCEDAL J,et al. On largebatch training for deep learning:generalization gap and sharp minima[EB/OL].[2020-08-26]. https://arxiv.org/pdf/1609.04836.pdf. [29] HOFFER E,HUBARA I,SOUDRY D. Train longer,generalize better:closing the generalization gap in large batch training of neural networks[C]//Proceedings of the 201731st International Conference on Neural Information Processing. Red Hook:Curran Associates Inc.,2017:1729-1739. [30] LEVIN A,NADLER B. Natural image denoising:optimality and inherent bounds[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2011:2833-2840. [31] LEVIN A,NADLER B,DURAND F,et al. Patch complexity, finite pixel correlations and optimal denoising[C]//Proceedings of the 2012 12th European Conference on Computer Vision,LNCS 7576. Berlin:Springer,2012:73-86. [32] 王鸿南, 钟文, 汪静, 等. 图像清晰度评价方法研究[J]. 中国图象图形学报, 2004, 9(7):828-831.(WANG H N,ZHONG W, WANG J, et al. Research of measurement for digital image definition[J]. Journal of Image and Graphics,2004,9(7):828-831.) |