[1] 刘翔宇. 石油化工工艺及其废水处理研究[J]. 石化技术,2019, 26(2):115, 117.(LIU X Y. Research on petrochemical technology and wastewater treatment[J]. Petrochemical Industry Technology, 2019,26(2):115,117.) [2] 马兴华, 黄光利, 陶恩生. 井下废弃油井影响区域硫化氢综合治理技术研究[J]. 能源与环保, 2019, 41(12):1-4.(MA X H, HUANG G L, TAO E S. Study on comprehensive treatment technology of hydrogen sulfide in area affected by underground abandoned oil well[J]. Energy and Environmental Protection, 2019,41(12):1-4.) [3] BROX T,MALIK J. Large displacement optical flow:descriptor matching in variational motion estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(3):500-513. [4] UMMENHOFER B. Large displacement optical flow for volumetric image sequences[C]//Proceedings of the 2011 Joint Pattern Recognition Symposium,LNCS 6835. Berlin:Springer,2011:432-437. [5] MIAO Y,SONG J. Abnormal event detection based on SVM in video surveillance[C]//Proceedings of the 2014 IEEE Workshop on Advanced Research and Technology in Industry Applications. Piscataway:IEEE,2014:1379-1383. [6] KIM H,LEE S,KIM Y,et al. Weighted joint-based human behavior recognition algorithm using only depth information for lowcost intelligent video-surveillance system[J]. Expert Systems with Applications,2016,45:131-141. [7] SABOKROU M,FAYYAZ M,FATHY M,et al. Deep-cascade:cascading 3D deep neural networks for fast anomaly detection and localization in crowded scenes[J]. IEEE Transactions on Image Processing,2017,26(4):1992-2004. [8] LIU P,TAO Y,ZHAO W,et al. Abnormal crowd motion detection using double sparse representation[J]. Neurocomputing,2017, 269:3-12. [9] YUAN Y,FENG Y,LU X. Structured dictionary learning for abnormal event detection in crowded scenes[J]. Pattern Recognition,2018,73:99-110. [10] LIU W,LUO W,LIAN D,et al. Future frame prediction for anomaly detection-a new baseline[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:6536-6545. [11] AKCAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. GANomaly:semi-supervised anomaly detection via adversarial training[C]//Proceedings of the 2018 Asian Conference on Computer Vision, LNCS 11363. Cham:Springer, 2018:622-637. [12] ZENATI H,FOO C S,LECOUAT B,et al. Efficient GAN-based anomaly detection[EB/OL].[2020-06-11]. https://arxiv.org/pdf/1802.06222.pdf. [13] SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C]//Proceedings of the 2017 International Conference on Information Processing in Medical Imaging,LNCS 10265. Cham:Springer,2017:146-157. [14] CHEN L C,ZHU Y,PAPANDREOU G,et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11211. Cham:Springer,2018:833-851. [15] TSAI Y H,HUNG W C,SCHULTER S,et al. Learning to adapt structured output space for semantic segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:7472-7481. [16] YU C,WANG J,PENG C,et al. Learning a discriminative feature network for semantic segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:1857-1866. [17] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on International Conference on Medical Image Computing and Computer-assisted Intervention,LNCS 9351. Cham:Springer,2015:234-241. [18] CONG Y,YUAN J,TANG Y. Video anomaly search in crowded scenes via spatio-temporal motion context[J]. IEEE Transactions on Information Forensics and Security,2013,8(10):1590-1599. [19] LONG J,SHELHAMER E,DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:3431-3440. [20] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [21] IOFFE S,SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 201532nd International Conference on Machine Learning. New York:JMLR. org,2015:448-456. [22] ZHONG J X,LI N,KONG W,et al. Graph convolutional label noise cleaner:train a plug-and-play action classifier for anomaly detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:1237-1246. [23] SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook:Curran Associates Inc.,2016:2234-2242. [24] ARJOVSKY M,CHINTALA S,BOTTOU L. Wasserstein GAN[EB/OL].[2020-06-13]. https://arxiv.org/pdf/1701.07875.pdf. [25] ISOLA P,ZHU J Y,ZHOU T,et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:5967-5976. [26] LIU F T,TING K M,ZHOU Z. Isolation forest[C]//Proceedings of the 8th IEEE International Conference on Data Mining. Piscataway:IEEE,2008:413-422. |