[1] CHENG G,HAN J W,LU X Q. Remote sensing image scene classification:benchmark and state of the art[J]. Proceedings of the IEEE,2017,105(10):1865-1883. [2] 余东行, 张保明, 赵传, 等. 联合卷积神经网络与集成学习的遥感影像场景分类[J]. 遥感学报,2020,24(6):717-727.(YU D H,ZHANG B M,ZHAO C,et al. Scene classification of remote sensing image using ensemble convolutional neural network[J].Journal of Remote Sensing,2020,24(6):717-727.) [3] WANG M W,WAN Y C,YE Z W,et al. Remote sensing image classification based on the optimal support vector machine and modified binary coded ant colony optimization algorithm[J]. Information Sciences,2017,402:50-68. [4] CHENG G,HAN J W. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2016,117:11-28. [5] HE K M,SUN J,TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(12):2341-2353. [6] ZHU Q S,MAI J M,SHAO L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing,2015,24(11):3522-3533. [7] BERMAND D, TREIBITZ T, AVIDAN S. Non-local image dehazing[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:1674-1682. [8] 沈文水, 周新志. 基于同态滤波的遥感薄云去除算法[J]. 强激光与粒子束,2010,22(1):45-48.(SHEN W S,ZHOU X Z. Algorithm for removing thin cloud from remote sensing digital images based on homomorphic filtering[J]. High Power Laser and Particle Beams,2010,22(1):45-48.) [9] 韩念龙, 刘闯, 庄立, 等. 基于不同小波变换与同态滤波结合的CBERS-02B卫星CCD图像的薄云去除[J]. 吉林大学学报(地球科学版),2012,42(1):275-279,288.(HAN N L,LIU C, ZHUANG L,et al. Removing thin cloud by combining wavelet transforms and homomorphic filter in the CBERS-02B image[J]. Journal of Jilin University(Earth Science Edition),2012,42(1):275-279,288.) [10] LIU Z K,HUNT B R. A new approach to removing cloud cover from satellite imagery[J]. Computer Vision,Graphics,and Image Processing,1984,25(2):252-256. [11] WAN M Z,LI X Y. Removing thin cloud on single remote sensing image based on SWF[C]//Proceedings of the 2016 IEEE International Conference of Online Analysis and Computing Science. Piscataway:IEEE,2016:397-400. [12] 何苗, 王保云, 盛伟, 等. 彩色遥感图像薄云去除方法[J]. 光学技术,2017,43(6):503-508.(HE M,WANG B Y,SHENG W, et al. Thin cloud removal method in color remote sensing image[J]. Optical Technique,2017,43(6):503-508.) [13] LI H F,ZHANG L P,SHEN H F. A principal component based haze masking method for visible images[J]. IEEE Geoscience and Remote Sensing Letters,2014,11(5):975-979. [14] XU M,JIA X P,PICKERING M,et al. Thin cloud removal from optical remote sensing images using the noise-adjusted principal components transform[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2019,149:215-225. [15] SHEN Y,WANG Y,LV H T. Thin cloud removal for Landsat 8 OLI data using independent component analysis[C]//Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium. Piscataway:IEEE,2015:921-924. [16] ZHANG Y,GUINDON B,CIHLAR J. An image transform to characterize and compensate for spatial variations in thin cloud contamination of Landsat images[J]. Remote Sensing of Environment,2002,82(2/3):173-187. [17] SHEN H F,LI X H,CHENG Q,et al. Missing information reconstruction of remote sensing data:a technical review[J]. IEEE Geoscience and Remote Sensing Magazine,2015,3(3):61-85. [18] WANG Z Y,JIN J Q,LIANG J W,et al. A new cloud removal algorithm for multi-spectral images[C]//Proceedings of the SPIE 6043, 2005 SAR and Multispectral Image Processing. Bellingham,WA:SPIE,2005:No. 60430W. [19] LV H T,WANG Y,SHEN Y. An empirical and radiative transfer model based algorithm to remove thin clouds in visible bands[J]. Remote Sensing of Environment,2016,179:183-195. [20] CAI B J,XU X M,JIA K,et al. DehazeNet:an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing,2016,25(11):5187-5198. [21] REN W Q,LIU S,ZHANG H,et al. Single image dehazing via multi-scale convolutional neural networks[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9906. Cham:Springer,2016:154-169. [22] LI B Y,PENG X L,WANG Z Y,et al. AOD-Net:all-in-one dehazing network[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:4780-4788. [23] CHEN D D,HE M M,FAN Q N,et al. Gated context aggregation network for image dehazing and deraining[C]//Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision. Piscataway:IEEE,2019:1375-1383. [24] ZHAO D,XU L,YAN Y H,et al. Multi-scale optimal fusion model for single image dehazing[J]. Signal Processing:Image Communication,2019,74:253-265. [25] GOODFELLOW I J,POUGET-ABADIE J,MEHDI M,et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2014:2672-2680. [26] MIRZA M,OSINDERO S. Conditional generative adversarial nets[EB/OL]. (2014-11-06)[2020-03-10]. https://arxiv.org/pdf/1411.1784.pdf. [27] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Interventions, LNCS 9351. Cham:Springer,2015:234-241. [28] LIN D Y,XU G L,WANG X K,et al. A remote sensing image dataset for cloud removal[EB/OL]. (2019-01-03)[2020-03-10]. https://arxiv.org/pdf/1901.00600.pdf. [29] QIN X,WANG Z L,BAI Y C,et al. FFA-Net:feature fusion attention network for single image dehazing[EB/OL]. (2019-12-05)[2020-03-10]. https://arxiv.org/pdf/1911.07559.pdf. |