计算机应用 ›› 2021, Vol. 41 ›› Issue (8): 2418-2426.DOI: 10.11772/j.issn.1001-9081.2020101564

所属专题: 第八届CCF大数据学术会议(CCF Bigdata 2020)

• 第八届CCF大数据学术会议 • 上一篇    下一篇

科研项目同行评议专家学术专长匹配方法

王梓森1,2, 梁英1, 刘政君1,2, 谢小杰1,2, 张伟1,2, 史红周1   

  1. 1. 中国科学院 计算技术研究所, 北京 100190;
    2. 中国科学院大学 计算机科学与技术学院, 北京 100049
  • 收稿日期:2020-10-10 修回日期:2020-12-03 出版日期:2021-08-10 发布日期:2021-01-27
  • 通讯作者: 梁英
  • 作者简介:王梓森(1998-),男,山东烟台人,硕士研究生,CCF会员,主要研究方向:数据挖掘、机器学习;梁英(1962-),女,北京人,高级工程师,硕士,CCF高级会员,主要研究方向:数据挖掘、大数据处理、普适计算;刘政君(1997-),男,山东聊城人,硕士研究生,CCF会员,主要研究方向:数据挖掘;谢小杰(1996-),男,湖南衡阳人,硕士研究生,CCF会员,主要研究方向:数据挖掘;张伟(1993-),男,安徽六安人,硕士研究生,主要研究方向:数据挖掘;史红周(1971-),男,陕西梅县人,高级工程师,博士,CCF会员,主要研究方向:物端协同计算、物联网安全、大数据。
  • 基金资助:
    国家重点研发计划项目(2018YFB1004700)。

Matching method for academic expertise of research project peer review experts

WANG Zisen1,2, LIANG Ying1, LIU Zhengjun1,2, XIE Xiaojie1,2, ZHANG Wei1,2, SHI Hongzhou1   

  1. 1. Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;
    2. College of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-10-10 Revised:2020-12-03 Online:2021-08-10 Published:2021-01-27
  • Supported by:
    This work is partially supported by the National Key Research and Development Program of China (2018YFB1004700).

摘要: 现有的评审专家推荐过程通常依赖于人工匹配,在进行专家推荐时不能充分捕捉评审项目所属学科与专家研究兴趣之间的语义关联,导致专家推荐的精确性较低。为解决这个问题,提出了一种科研项目同行评议专家学术专长匹配方法。该方法构建学术网络以建立学术实体联系,并设计元路径捕捉学术网络中不同节点间的语义关联;使用随机游走策略获得项目所属学科与专家研究兴趣共现关联的节点序列,并通过网络表示学习模型训练得到具有语义关联的项目所属学科与专家研究兴趣的向量表示;在此基础上,按照项目学科树层次结构逐层计算语义相似度,以实现多粒度的同行评议学术专长匹配。在爬取的知网和万方论文数据集、某专家评审数据集、以及百度百科词向量数据集上得到的实验结果表明,所提方法能提升项目所属学科与专家研究兴趣间的语义关联,并能有效应用于项目评审专家的学术专长匹配。

关键词: 专家推荐, 同行评议, 学术网络, 元路径, 表示学习

Abstract: Most of the existing expert recommendation processes rely on manual matching, which leads to the low accuracy of expert recommendation due to that they cannot fully capture the semantic association between the subject of the project and the interests of experts. To solve this problem, a matching method for academic expertise of project peer review experts was proposed. In the method, an academic network was constructed to establish the academic entity connection, and a meta-path was designed to capture the semantic association between different nodes in the academic network. By using the random walk strategy, the node sequence of co-occurrence association between the subject of the project and the expert research interests was obtained. And through the network representation learning model training, the vector representation with semantic association of the project subject and expert research interests was obtained. On this basis, the semantic similarity was calculated layer by layer according to the hierarchical structure of project subject tree to realize multi-granularity peer review academic expertise matching. Experimental results on the crawled datasets of HowNet and Wanfang papers, an expert review dataset and Baidu Baike word vector dataset show that this method can enhance the semantic association between the project subject and expert research interests, and can be effectively applied to the academic expertise matching of project review experts.

Key words: expert recommendation, peer review, academic network, meta-path, representation learning

中图分类号: