《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (7): 2125-2132.DOI: 10.11772/j.issn.1001-9081.2022060872
所属专题: 人工智能
收稿日期:
2022-06-16
修回日期:
2022-08-22
接受日期:
2022-08-30
发布日期:
2022-09-22
出版日期:
2023-07-10
通讯作者:
蔡钢生
作者简介:
张奕(1977—),女,江西九江人,教授,博士,主要研究方向:机器学习、推荐系统;基金资助:
Yi ZHANG1,2, Gangsheng CAI1(), Zhenmei WANG1
Received:
2022-06-16
Revised:
2022-08-22
Accepted:
2022-08-30
Online:
2022-09-22
Published:
2023-07-10
Contact:
Gangsheng CAI
About author:
ZHANG Yi, born in 1977, Ph. D., professor. Her research interests include machine learning, recommender system.Supported by:
摘要:
针对现有长链非编码RNA (lncRNA)-疾病关联预测模型在综合利用异构生物网络的交互、语义信息上存在局限性的问题,提出一种基于语义与全局双重注意力机制的lncRNA-疾病关联预测模型(SGALDA)。首先,基于相似性和已知关联构建一个lncRNA-疾病-微小RNA(miRNA)异构网络,并基于消息传递类型设计特征提取模块来提取和融合异构网络上同质、异质节点的邻域特征,以捕捉异构网络上的多层面交互关系。其次,基于元路径将异构网络分解为多个语义子网络,并分别在各个子网络上应用图卷积网络(GCN)来提取节点的语义特征,以捕捉异构网络上的高阶交互关系。然后,基于语义与全局双重注意力机制融合节点的语义和邻域特征,以获得更具代表性的节点特征。最后,利用lncRNA节点特征和疾病节点特征的内积运算重建lncRNA-疾病关联。5折交叉验证结果显示,SGALDA的受试者工作特征曲线下面积(AUROC)为0.994 5±0.000 2,PR曲线下面积(AUPR)为0.916 7±0.001 1,在所有对比模型中均为最高,验证了SGALDA良好的预测性能。对乳腺癌、胃癌的案例研究进一步证实了SGALDA识别潜在lncRNA-疾病关联的能力,说明SGALDA有潜力成为一种可靠的lncRNA-疾病关联预测模型。
中图分类号:
张奕, 蔡钢生, 王真梅. 基于语义与全局双重注意力机制的长链非编码RNA-疾病关联预测模型[J]. 计算机应用, 2023, 43(7): 2125-2132.
Yi ZHANG, Gangsheng CAI, Zhenmei WANG. Long non-coding RNA-disease association prediction model based on semantic and global dual attention mechanism[J]. Journal of Computer Applications, 2023, 43(7): 2125-2132.
元路径 | 可能代表的语义 |
---|---|
lncRNA-lncRNA | 相似的lncRNA可能存在关联 |
疾病-疾病 | 相似的疾病可能存在关联 |
lncRNA-疾病-lncRNA | 连接同一疾病的两个lncRNA可能存在关联 |
lncRNA-miRNA-lncRNA | 与同一miRNA存在交互作用的两个lncRNA可能存在关联 |
疾病-lncRNA-疾病 | 连接同一lncRNA的两个疾病可能存在关联 |
疾病-miRNA-疾病 | 连接同一miRNA的两个疾病可能存在关联 |
lncRNA-疾病 | lncRNA-疾病已知存在的关联 |
lncRNA-miRNA-疾病 | 与miRNA存在交互作用的lncRNA,可能与miRNA关联的疾病有关 |
lncRNA-疾病-miRNA-疾病 | 与疾病存在关联的lncRNA,可能与该疾病关联的miRNA所关联疾病有关 |
表1 提取语义特征的元路径及其可能代表的语义
Tab. 1 Meta-paths for extracting semantic features and their possible semantic representations
元路径 | 可能代表的语义 |
---|---|
lncRNA-lncRNA | 相似的lncRNA可能存在关联 |
疾病-疾病 | 相似的疾病可能存在关联 |
lncRNA-疾病-lncRNA | 连接同一疾病的两个lncRNA可能存在关联 |
lncRNA-miRNA-lncRNA | 与同一miRNA存在交互作用的两个lncRNA可能存在关联 |
疾病-lncRNA-疾病 | 连接同一lncRNA的两个疾病可能存在关联 |
疾病-miRNA-疾病 | 连接同一miRNA的两个疾病可能存在关联 |
lncRNA-疾病 | lncRNA-疾病已知存在的关联 |
lncRNA-miRNA-疾病 | 与miRNA存在交互作用的lncRNA,可能与miRNA关联的疾病有关 |
lncRNA-疾病-miRNA-疾病 | 与疾病存在关联的lncRNA,可能与该疾病关联的miRNA所关联疾病有关 |
参数 | 设置 |
---|---|
近邻节点数量K | 5 |
GCN层数n | 2 |
GCN隐藏层单元数量k | 128 |
非线性变换隐藏层单元数量 | 64 |
epoch | 300 |
学习率 | 0.005 |
权重衰减系数 | 0.000 01 |
Dropout概率 | 0.4 |
表2 实验参数设定
Tab. 2 Setting of experimental parameters
参数 | 设置 |
---|---|
近邻节点数量K | 5 |
GCN层数n | 2 |
GCN隐藏层单元数量k | 128 |
非线性变换隐藏层单元数量 | 64 |
epoch | 300 |
学习率 | 0.005 |
权重衰减系数 | 0.000 01 |
Dropout概率 | 0.4 |
模型 | AUROC | AUPR |
---|---|---|
MFLDA | 0.740 8 ± / | 0.204 5 ± 0.002 3 |
TPGLDA | 0.877 1 ± 0.005 3 | 0.319 2 ± 0.005 8 |
GCNLDA | 0.9598 ± / | 0.223 3 ± / |
VGAELDA | 0.969 2 ± 0.008 0 | 0.820 3 ± 0.013 9 |
SGALDA | 0.9945 ± 0.000 2 | 0.9167 ± 0.001 1 |
表3 实验结果
Tab. 3 Experimental results
模型 | AUROC | AUPR |
---|---|---|
MFLDA | 0.740 8 ± / | 0.204 5 ± 0.002 3 |
TPGLDA | 0.877 1 ± 0.005 3 | 0.319 2 ± 0.005 8 |
GCNLDA | 0.9598 ± / | 0.223 3 ± / |
VGAELDA | 0.969 2 ± 0.008 0 | 0.820 3 ± 0.013 9 |
SGALDA | 0.9945 ± 0.000 2 | 0.9167 ± 0.001 1 |
模型 | 邻域特征提取 | 语义特征提取 | 双重注意力机制 | |
---|---|---|---|---|
语义 | 全局 | |||
SGALDA-neighbor | √ | |||
SGALDA-avgsemantic | √ | 平均 | ||
SGALDA-semantic | √ | √ | ||
SGALDA-ns | √ | √ | 平均 | 平均 |
SGALDA-ns-s | √ | √ | √ | 平均 |
SGALDA-ns-g | √ | √ | 平均 | √ |
SGALDA | √ | √ | √ | √ |
表4 SGALDA与其变体模型的模块使用情况
Tab. 4 Module usage of SGALDA and its variants
模型 | 邻域特征提取 | 语义特征提取 | 双重注意力机制 | |
---|---|---|---|---|
语义 | 全局 | |||
SGALDA-neighbor | √ | |||
SGALDA-avgsemantic | √ | 平均 | ||
SGALDA-semantic | √ | √ | ||
SGALDA-ns | √ | √ | 平均 | 平均 |
SGALDA-ns-s | √ | √ | √ | 平均 |
SGALDA-ns-g | √ | √ | 平均 | √ |
SGALDA | √ | √ | √ | √ |
模型 | AUROC | AUPR |
---|---|---|
SGALDA-avgsemantic | 0.974 5 ± 0.000 2 | 0.736 4 ± 0.001 1 |
SGALDA-semantic | 0.971 4 ± 0.002 2 | 0.784 8 ± 0.004 6 |
SGALDA-ns | 0.992 6 ± 0.000 2 | 0.897 3 ± 0.002 1 |
SGALDA-ns-s | 0.992 7 ± 0.000 1 | 0.898 9 ± 0.001 8 |
SGALDA-neighbor | 0.993 2 ± 0.000 2 | 0.899 7 ± 0.001 5 |
SGALDA-ns-g | 0.992 9 ± 0.000 3 | 0.900 5 ± 0.002 1 |
SGALDA | 0.9945 ± 0.000 2 | 0.9167 ± 0.001 1 |
表5 SGALDA与其变体模型的对比结果
Tab. 5 Comparison results of SGALDA and its variants
模型 | AUROC | AUPR |
---|---|---|
SGALDA-avgsemantic | 0.974 5 ± 0.000 2 | 0.736 4 ± 0.001 1 |
SGALDA-semantic | 0.971 4 ± 0.002 2 | 0.784 8 ± 0.004 6 |
SGALDA-ns | 0.992 6 ± 0.000 2 | 0.897 3 ± 0.002 1 |
SGALDA-ns-s | 0.992 7 ± 0.000 1 | 0.898 9 ± 0.001 8 |
SGALDA-neighbor | 0.993 2 ± 0.000 2 | 0.899 7 ± 0.001 5 |
SGALDA-ns-g | 0.992 9 ± 0.000 3 | 0.900 5 ± 0.002 1 |
SGALDA | 0.9945 ± 0.000 2 | 0.9167 ± 0.001 1 |
疾病 | 排名 | lncRNA名称 | PMID |
---|---|---|---|
乳腺癌 | 1 | MIR17HG | 25680407 |
2 | MYCNOS | 未确认 | |
3 | CASC15 | 33551326; 35235236 | |
4 | HAND2-AS1 | 33290256; 33015182 | |
5 | LINC00467 | 33996559; 34956437 | |
6 | TUG1 | 29657297; 28950664 | |
7 | LINC00261 | 33274565; 32440206 | |
8 | HNF1A-AS1 | 32319789; 35539662 | |
9 | PCAT5 | 未确认 | |
10 | LINC00963 | 32052688 | |
胃癌 | 1 | MALAT1 | 34036905; 28077118 |
2 | NEAT1 | 33982777; 29363783 | |
3 | CCAT2 | 25755774; 28248065 | |
4 | MIR17HG | 31186404 | |
5 | DISC2 | 未确认 | |
6 | KCNQ1OT1 | 33682985; 31915311 | |
7 | LINC00312 | 未确认 | |
8 | HULC | 31726371 | |
9 | TUG1 | 34762771 | |
10 | BCYRN1 | 31652309 |
表6 乳腺癌、胃癌相关的潜在lncRNA
Tab. 6 LncRNAs potentially associated with breast cancer and stomach cancer
疾病 | 排名 | lncRNA名称 | PMID |
---|---|---|---|
乳腺癌 | 1 | MIR17HG | 25680407 |
2 | MYCNOS | 未确认 | |
3 | CASC15 | 33551326; 35235236 | |
4 | HAND2-AS1 | 33290256; 33015182 | |
5 | LINC00467 | 33996559; 34956437 | |
6 | TUG1 | 29657297; 28950664 | |
7 | LINC00261 | 33274565; 32440206 | |
8 | HNF1A-AS1 | 32319789; 35539662 | |
9 | PCAT5 | 未确认 | |
10 | LINC00963 | 32052688 | |
胃癌 | 1 | MALAT1 | 34036905; 28077118 |
2 | NEAT1 | 33982777; 29363783 | |
3 | CCAT2 | 25755774; 28248065 | |
4 | MIR17HG | 31186404 | |
5 | DISC2 | 未确认 | |
6 | KCNQ1OT1 | 33682985; 31915311 | |
7 | LINC00312 | 未确认 | |
8 | HULC | 31726371 | |
9 | TUG1 | 34762771 | |
10 | BCYRN1 | 31652309 |
1 | 王馨悦,李剑.长链非编码RNA在肿瘤中的研究进展[J].癌症进展, 2018, 16(11): 1328-1330, 1423. |
WANG X Y, LI J. Research advances of lncRNA in tumors[J]. Oncology Progress, 2018, 16(11): 1328-1330, 1423. | |
2 | GEISLER S, COLLER J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts[J]. Nature Reviews Molecular Cell Biology, 2013, 14(11): 699-712. 10.1038/nrm3679 |
3 | 彭颖,冯继锋.长链非编码RNA在常见肿瘤中的研究进展[J].中国肿瘤外科杂志, 2020, 12(2): 174-179, 184. 10.3969/j.issn.1674-4136.2020.02.019 |
PENG Y, FENG J F. Research progress of long non-coding RNA in common tumors[J]. Chinese Journal of Surgical Oncology, 2020, 12(2): 174-179, 184. 10.3969/j.issn.1674-4136.2020.02.019 | |
4 | YAN C C, ZHANG Z C, BAO S Q, et al. Computational methods and applications for identifying disease-associated lncRNAs as potential biomarkers and therapeutic targets[J]. Molecular Therapy — Nucleic Acids, 2020, 21: 156-171. 10.1016/j.omtn.2020.05.018 |
5 | CHEN G, WANG Z Y, WANG D Q, et al. LncRNADisease: a database for long-non-coding RNA-associated diseases[J]. Nucleic Acids Research, 2013, 41(D1): D983-D986. 10.1093/nar/gks1099 |
6 | NING S W, ZHANG J Z, WANG P, et al. Lnc2Cancer: a manually curated database of experimentally supported lncRNAs associated with various human cancers[J]. Nucleic Acids Research, 2016, 44(D1): D980-D985. 10.1093/nar/gkv1094 |
7 | LI Y, QIU C X, TU J, et al. HMDD v2.0: a database for experimentally supported human microRNA and disease associations[J]. Nucleic Acids Research, 2014, 42(D1): D1070-D1074. 10.1093/nar/gkt1023 |
8 | WANG Y T, JUAN L R, PENG J J, et al. LncDisAP: a computation model for LncRNA-disease association prediction based on multiple biological datasets[J]. BMC Bioinformatics, 2019, 20(S16): No.582. 10.1186/s12859-019-3081-1 |
9 | LI J C, ZHAO H C, XUAN Z W, et al. A novel approach for potential human lncRNA-disease association prediction based on local random walk[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18(3): 1049-1059. 10.1109/tcbb.2019.2934958 |
10 | ZHANG J P, ZHANG Z P, CHEN Z G, et al. Integrating multiple heterogeneous networks for novel lncRNA-disease association inference[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16(2): 396-406. 10.1109/tcbb.2017.2701379 |
11 | DING L, WANG M H, SUN D D, et al. TPGLDA: novel prediction of associations between lncRNAs and diseases via lncRNA-disease-gene tripartite graph[J]. Scientific Reports, 2018, 8: No.1065. 10.1038/s41598-018-19357-3 |
12 | FU G Y, WANG J, DOMENICONI C, et al. Matrix factorization-based data fusion for the prediction of lncRNA-disease associations[J]. Bioinformatics, 2018, 34(9): 1529-1537. 10.1093/bioinformatics/btx794 |
13 | ZENG M, LU C Q, ZHANG F H, et al. SDLDA: lncRNA-disease association prediction based on singular value decomposition and deep learning[J]. Methods, 2020, 179: 73-80. 10.1016/j.ymeth.2020.05.002 |
14 | LU C Q, YANG M Y, LI M, et al. Predicting human lncRNA-disease associations based on geometric matrix completion[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(8): 2420-2429. 10.1109/jbhi.2019.2958389 |
15 | XUAN P, PAN S X, ZHANG T G, et al. Graph convolutional network and convolutional neural network based method for predicting lncRNA-disease associations[J]. Cells, 2019, 8(9): No.1012. 10.3390/cells8091012 |
16 | SHI Z W, ZHANG H, JIN C, et al. A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations[J]. BMC Bioinformatics, 2021, 22: No.136. 10.1186/s12859-021-04073-z |
17 | WANG L, ZHONG C. gGATLDA: lncRNA-disease association prediction based on graph-level graph attention network[J]. BMC Bioinformatics, 2022, 23: No.11. 10.1186/s12859-021-04548-z |
18 | WANG D, WANG J, LU M, et al. Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases[J]. Bioinformatics, 2010, 26(13): 1644-1650. 10.1093/bioinformatics/btq241 |
19 | CHEN X, YAN G Y. Novel human lncRNA-disease association inference based on lncRNA expression profiles[J]. Bioinformatics, 2013, 29(20): 2617-2624. 10.1093/bioinformatics/btt426 |
20 | LU M, ZHANG Q P, DENG M, et al. An analysis of human microRNA and disease associations[J]. PLoS ONE, 2008, 3(10): No.e3420. 10.1371/journal.pone.0003420 |
21 | CHEN X, CLARENCE YAN C G, LUO C, et al. Constructing lncRNA functional similarity network based on lncRNA-disease associations and disease semantic similarity[J]. Scientific Reports, 2015, 5: No.11338. 10.1038/srep11338 |
22 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2022-05-03]. . 10.48550/arXiv.1609.02907 |
23 | NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines [C]// Proceedings of the 27th International Conference on Machine Learning. Madison, WI: Omnipress, 2010: 807-814. |
24 | CAI L J, LU C C, XU J L, et al. Drug repositioning based on the heterogeneous information fusion graph convolutional network[J]. Briefings in Bioinformatics, 2021, 22(6): No.bbab319. 10.1093/bib/bbab319 |
25 | LI Q M, HAN Z C, WU X M. Deeper insights into graph convolutional networks for semi-supervised learning [C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 3538-3545. 10.1609/aaai.v32i1.11604 |
26 | LI X, DING D H, KAO B, et al. Leveraging meta-path contexts for classification in heterogeneous information networks [C]// Proceedings of the IEEE 37th International Conference on Data Engineering. Piscataway: IEEE, 2021: 912-923. 10.1109/icde51399.2021.00084 |
27 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2022-05-16]. . |
28 | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15: 1929-1958. |
29 | LU Z Y, COHEN K B, HUNTER L. GeneRIF quality assurance as summary revision [C]// Proceedings of the Pacific Symposium on Biocomputing 2007. Maui: World Scientific Publishing, 2007: 269-280. 10.1142/9789812772435_0026 |
30 | LI J H, LIU S, ZHOU H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data[J]. Nucleic Acids Research, 2014, 42(D1): D92-D97. 10.1093/nar/gkt1248 |
31 | 刘宗超,李哲轩,张阳,等. 2020全球癌症统计报告解读[J].肿瘤综合治疗电子杂志, 2021, 7(2): 1-14. |
LIU Z C, LI Z X, ZHANG Y, et al. Interpretation on the report of global cancer statistics 2020[J]. Journal of Multidisciplinary Cancer Management (Electronic Version), 2021, 7(2): 1-14. | |
32 | CHACON-CORTES D, SMITH R A, LEA R A, et al. Association of microRNA 17-92 cluster Host Gene (MIR17HG) polymorphisms with breast cancer[J]. Tumor Biology, 2015, 36(7): 5369-5376. 10.1007/s13277-015-3200-1 |
33 | SHEN P, YU Y, YAN Y, et al. LncRNA CASC15 regulates breast cancer cell stemness via the miR-654-5p/MEF2D axis[J]. Journal of Biochemical and Molecular Toxicology, 2022, 36(5): No.e23023. 10.1002/jbt.23023 |
34 | DONG G L, WANG X R, JIA Y, et al. HAND2-AS1 works as a ceRNA of miR-3118 to suppress proliferation and migration in breast cancer by upregulating PHLPP2[J]. BioMed Research International, 2020, 2020: No.8124570. 10.1155/2020/8124570 |
35 | XU W, DING M D, WANG B, et al. Molecular mechanism of the canonical oncogenic lncRNA MALAT1 in gastric cancer[J]. Current Medicinal Chemistry, 2021, 28(42): 8800-8809. 10.2174/1875533xmte1anzi90 |
36 | ZHOU Y, SHA Z H, YANG Y, et al. lncRNA NEAT1 regulates gastric carcinoma cell proliferation, invasion and apoptosis via the miR‑500a‑3p/XBP‑1 axis[J]. Molecular Medicine Reports, 2021, 24(1): No.503. 10.3892/mmr.2021.12142 |
37 | FENG L, LI H Q, LI F, et al. LncRNA KCNQ1OT1 regulates microRNA-9-LMX1A expression and inhibits gastric cancer cell progression[J]. Aging, 2020, 12(1): 707-717. 10.18632/aging.102651 |
[1] | 薛桂香, 王辉, 周卫峰, 刘瑜, 李岩. 基于知识图谱和时空扩散图卷积网络的港口交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2952-2957. |
[2] | 赵志强, 马培红, 黑新宏. 基于双重注意力机制的人群计数方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2886-2892. |
[3] | 庞川林, 唐睿, 张睿智, 刘川, 刘佳, 岳士博. D2D通信系统中基于图卷积网络的分布式功率控制算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2855-2862. |
[4] | 刘禹含, 吉根林, 张红苹. 基于骨架图与混合注意力的视频行人异常检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2551-2557. |
[5] | 李欢欢, 黄添强, 丁雪梅, 罗海峰, 黄丽清. 基于多尺度时空图卷积网络的交通出行需求预测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2065-2072. |
[6] | 黎施彬, 龚俊, 汤圣君. 基于Graph Transformer的半监督异配图表示学习模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1816-1823. |
[7] | 吕锡婷, 赵敬华, 荣海迎, 赵嘉乐. 基于Transformer和关系图卷积网络的信息传播预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1760-1766. |
[8] | 高龙涛, 李娜娜. 基于方面感知注意力增强的方面情感三元组抽取[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1049-1057. |
[9] | 杨先凤, 汤依磊, 李自强. 基于交替注意力机制和图卷积网络的方面级情感分析模型[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1058-1064. |
[10] | 王楷天, 叶青, 程春雷. 基于异构图表示的中医电子病历分类方法[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 411-417. |
[11] | 吴祖成, 吴小俊, 徐天阳. 基于模态内细粒度特征关系提取的图像文本检索模型[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3776-3783. |
[12] | 胡新荣, 陈静雪, 黄子键, 王帮超, 姚迅, 刘军平, 朱强, 杨捷. 基于图卷积网络的掩码数据增强[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3335-3344. |
[13] | 王利琴, 张特, 许智宏, 董永峰, 杨国伟. 融合实体语义及结构信息的知识图谱推理[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3371-3378. |
[14] | 梁睿衍, 杨慧. 基于RPEpose和XJ-GCN的轻量级跌倒检测算法框架[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3639-3646. |
[15] | 项能强, 朱小飞, 高肇泽. 原型感知双通道图卷积神经网络的信息传播预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3260-3266. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||