[1] GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2014:580-587. [2] REN S Q,HE K M,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017, 39(6):1137-1149. [3] LIU W,ANGUELOV D,ERHAN D,et al. SSD:single shot multibox detector[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9905. Cham:Springer, 2016:21-37. [4] ZHANG S F,WEN L Y,BIAN X,et al. Single-shot refinement neural network for object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:4203-4212. [5] REDMON J,FARHADI A. YOLOv3:an incremental improvement[EB/OL]. (2018-04-08)[2020-05-22]. https://arxiv.org/pdf/1804.02767.pdf. [6] LAW H,DENG J. CornerNet:detecting objects as paired keypoints[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11218. Cham:Springer,2018:765-781. [7] DUAN K W,BAI S,XIE L X,et al. CenterNet:keypoint triplets for object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision. Piscataway:IEEE,2019:6568-6577. [8] OKSUZ K,CAM B C,KALKAN S,et al. Imbalance problems in object detection:a review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020(Early Access):1-1. [9] PINHEIRO P O, COLLOBERT R, DOLLÁR P. Learning to segment object candidates[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2015:1990-1998. [10] PINHEIRO P O,LIN T Y,COLLOBERT R,et al. Learning to refine object segments[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9905. Cham:Springer, 2016:75-91. [11] UIJLINGS J,VAN DE SANDE J K E A,GEVERS T,et al. Selective search:selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171. [12] ZITNICK C L,DOLLÁR P. Edge boxes:locating object proposals from edges[C]//Proceedings of the 2014 European Conference on Computer Vision,LNCS 8693. Cham:Springer,2014:391-405. [13] SHRIVASTAVA A,GUPTA A,GIRSHICK R. Training regionbased object detectors with online hard example mining[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:761-769. [14] FELZENSZWALB P F,GIRSHICK R,McALLESTER D,et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(9):1627-1645. [15] LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):318-327. [16] ZHANG S F,CHI C,YAO Y Q,et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2020:9756-9765. [17] GUO M, HAQUE A, HUANG D A, et al. Dynamic task prioritization for multitask learning[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11220. Cham:Springer,2018:282-299. [18] LIN T Y,DOLLÁR P,GIRSHICK R,et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:936-944. [19] 陶显, 侯伟, 徐德. 基于深度学习的表面缺陷检测方法综述[J]. 自动化学报,2021,47(5):1017-1034.(TAO X,HOU W, XU D. A survey of surface defect detection methods based on deep learning[J]. Acta Automatica Sinica,2021,47(5):1017-1034.) [20] 耿立明, 杨威, 王迪. HALCON图像处理在机器视觉中的应用[J]. 电子测试,2019(1):125-126.(GENG L M,YANG W, WANG D. Application of machine vision based on HALCON image processing[J]. Electronic Test,2019(1):125-126.) [21] 黄庆康, 宋恺涛, 陆建峰. 应用于不平衡多分类问题的损失平衡函数[J]. 智能系统学报,2019,14(5):953-958.(HUANG Q K,SONG K T,LU J F. Application of the loss balance function to the imbalanced multi-classification problems[J]. CAAI Transactions on Intelligent Systems,2019,14(5):953-958.) [22] 姚佳奇, 徐正国, 燕继坤, 等. WPLoss:面向类别不平衡数据的加权成对损失[J]. 计算机应用研究,2021,38(3):702-704, 709.(YAO J Q,XU Z G,YAN J K,et al. WPloss:weighted pairwise loss for class-imbalanced datasets[J]. Application Research of Computer,2021,38(3):702-704,709.) |