[1] CAMPBELL B C V, DE SILVA D A, MACLEOD M R, et al. Ischaemic stroke[J]. Nature Reviews Disease Primers, 2019, 5:No. 70. [2] GBD 2016 Lifetime Risk of Stroke Collaborators. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016[J]. The New England Journal of Medicine, 2018, 379(25):2429-2437. [3] EKERETE I, NUGENT C, McLAUGHLIN J. An unobtrusive sensing solution for home based post-stroke rehabilitation[C]//Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine. Piscataway:IEEE, 2019:1478-1479. [4] LUDWIG M, VON PETZINGER-KRUTHOFF A, VON BUQUOY M, et al. Intima-Media-Dicke der Karotisarterien:Früher Indikator für Arteriosklerose und therapeutischer Endpunkt[J]. Ultraschall in der Medizin, 2003, 24(3):162-174. [5] RILEY W A. Cardiovascular risk assessment in individual patients from carotid intimal-medial thickness measurements[J]. Current Atherosclerosis Reports, 2004, 6(3):225-231. [6] ALI Y S, REMBOLD K E, WEAVER B, et al. Prediction of major adverse cardiovascular events by age-normalized carotid intimal medial thickness[J]. Atherosclerosis, 2006, 187(1):186-190. [7] PRATI P, VANUZZO D, CASAROLI M, et al. Determinants of carotid plaque occurrence[J]. Cerebrovascular Diseases, 2006, 22(5/6):416-422. [8] EIGENBRODT M L, BURSAC Z, TRACY R E, et al. B-mode ultrasound common carotid artery intima-media thickness and external diameter:cross-sectional and longitudinal associations with carotid atherosclerosis in a large population sample[J]. Cardiovascular Ultrasound, 2008, 6:No. 10. [9] KUBALE R, ARNING C. Stellenwert der Doppler-sonographischen Verfahren zur Diagnose der Karotisstenosen[J]. Der Radiologe, 2004, 44(10):946-959. [10] HOLLAND J H. Adaptation in Natural and Artificial Systems:An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence[M]. Cambridge:MIT Press, 1976:529. [11] 文艺, 董玉斌. 先天性巨结肠术后并发肠炎危险因素逻辑回归分析[J]. 中华实验外科杂志, 2019, 36(1):130.(WEN Y, DONG Y B. Logistic regression analysis of risk factors for postoperative enteritis in Hirschsprung's disease[J]. Chinese Journal of Experimental Surgery, 2019, 36(1):130.) [12] 徐静妹, 李雷. 基于稀疏表示和支持向量机的人脸识别算法[J]. 计算机技术与发展, 2018, 28(2):59-63.(XU J M, LI L. A face recognition algorithm based on sparse representation and support vector machine[J]. Computer Technology and Development, 2018, 28(2):59-63.) [13] VIJIYAKUMAR K, LAVANYA B, NIRMALA I, et al. Random forest algorithm for the prediction of diabetes[C]//Proceedings of the 2019 IEEE International Conference on System, Computation, Automation and Networking. Piscataway:IEEE, 2019:1-5. [14] HU Z X, QIU H, SU Z Q, et al. A stacking ensemble model to predict daily number of hospital admissions for cardiovascular diseases[J]. IEEE Access, 2020, 8:138719-138729. [15] SAPOSNIK G, COTE R, MAMDANI M, et al. JURaSSiC:accuracy of clinician vs risk score prediction of ischemic stroke outcomes[J]. Neurology, 2013, 81(5):448-455. [16] NTAIOS G, GIOULEKAS F, PAPAVASILEIOU V, et al. ASTRAL, DRAGON and SEDAN scores predict stroke outcome more accurately than physicians[J]. European Journal of Neurology, 2016, 23(11):1651-1657. [17] BRINDLE P, EMBERSON J, LAMPE F, et al. Predictive accuracy of the Framingham coronary risk score in British men:prospective cohort study[J]. BMJ, 2003, 327(7426):No. 1267. [18] YANG X L, LI J X, HU D S, et al. Predicting the 10-year risks of atherosclerotic cardiovascular disease in Chinese population:the China-PAR project (prediction for ASCVD risk in China)[J]. Circulation, 2016, 134(19):1430-1440. [19] MIR A, DHAGE S N. Diabetes disease prediction using machine learning on big data of healthcare[C]//Proceedings of the 4th International Conference on Computing Communication Control and Automation. Piscataway:IEEE, 2018:1-6. [20] KOUROU K, EXARCHOS T P, EXARCHOS K P, et al. Machine learning applications in cancer prognosis and prediction[J]. Computational and Structural Biotechnology, 2015, 13:8-17. [21] KIM K J, TAGKOPOULOS I. Application of machine learning in rheumatic disease research[J]. The Korean Journal of Internal Medicine, 2019, 34(4):708-722. [22] ISLAM M M, WU C C, POLY T N, et al. Applications of machine learning in fatty live disease prediction[J]. Studies in Health Technology and Informatics, 2018, 247:166-170. [23] WENG S F, REPS J, KAI J, et al. Can machine-learning improve cardiovascular risk prediction using routine clinical data?[J]. PLoS ONE, 2017, 12(4):No. e0174944. [24] KINGMA D P, WELLING M. Auto-Encoding variational Bayes[EB/OL]. (2014-05-01)[2020-12-22]. https://arxiv.org/pdf/1312.6114.pdf. [25] TU C T, CHEN Y F. Facial Image inpainting with variational autoencoder[C]//Proceedings of the 2nd International Conference of Intelligent Robotic and Control Engineering. Piscataway:IEEE, 2019:119-122. [26] LIN C C, HUNG Y, FERIS R, et al. Video instance segmentation tracking with a modified VAE architecture[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2020:13144-13154. [27] BI L Z, ZHANG J W, LIAN J L. EEG-based adaptive drivervehicle interface using variational autoencoder and PI-TSVM[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(10):2025-2033. [28] NAZÁBAL A, OLMOS P M, GHAHRAMANI Z, et al. Handling incomplete heterogeneous data using VAEs[J]. Pattern Recognition, 2020, 107:No. 107501. [29] BARZ B, RODNER E, GARCIA Y G, et al. Detecting regions of maximal divergence for spatio-temporal anomaly detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(5):1088-1101. [30] FANG Y Q, XIAO X, GE J W. Cloud computing task scheduling algorithm based on improved genetic algorithm[C]//Proceedings of the IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference. Piscataway:IEEE, 2019:852-856. [31] ÇINAROĞLU S, BODUR S. A new hybrid approach based on genetic algorithm for minimum vertex cover[C]//Proceedings of 2018 IEEE International Conference on Innovations in Intelligent Systems and Applications. Piscataway:IEEE, 2018:1-5. [32] RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062):1518-1524. |