[1] 张松灿, 普杰信, 司彦娜, 等. 蚁群算法在移动机器人路径规划中的应用综述[J]. 计算机工程与应用,2020,56(8):10-19. (ZHANG S C,PU J X,SI Y N,et al. Survey on application of ant colony algorithm in path planning of mobile robot[J]. Computer Engineering and Applications,2020,56(8):10-19.) [2] 刘佳, 秦小林, 许洋, 等. 固定翼无人机在线航迹规划方法[J]. 计算机应用,2019,39(12):3522-3527.(LIU J,QIN X L,XU Y, et al. On-line trajectory planning method for fixed-wing unmanned aerial vehicle[J]. Journal of Computer Applications,2019,39(12):3522-3527.) [3] 王功亮, 王好臣, 李振雨, 等. 基于优化遗传算法的移动机器人路径规划[J]. 机床与液压,2019,47(3):37-40,100.(WANG G L,WANG H C,LI Z Y,et al. Path planning for mobile robots based on optimized genetic algorithm[J]. Machine Tool and Hydraulics,2019,47(3):37-40,100.) [4] 郑延斌, 王林林, 席鹏雪, 等. 基于蚁群算法及博弈论的多Agent路径规划算法[J]. 计算机应用,2019,39(3):681-687. (ZHENG Y B,WANG L L,XI P X,et al. Multi-Agent path planning algorithm based on ant colony algorithm and game theory[J]. Journal of Computer Applications,2019,39(3):681-687.) [5] 张涛, 刘天威, 李富章, 等. 基于改进烟花算法的多目标多机器人任务分配[J]. 信号处理,2020,36(8):1243-1252.(ZHANG T, LIU T W,LI F Z,et al. Multi-objective and multi-robot mission planning based on improved firework algorithm[J]. Journal of Signal Processing,2020,36(8):1243-1252.) [6] QIAN Q W,WU J F,WANG Z. Optimal path planning for twowheeled self-balancing vehicle pendulum robot based on quantumbehaved particle swarm optimization algorithm[J]. Personal and Ubiquitous Computing,2019,23(3/4):393-403. [7] DORIGO M, MANIEZZO V, COLORNI A. Ant system:optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),1996,26(1):29-41. [8] 胡春阳, 姜平, 周根荣. 改进蚁群算法在AGV路径规划中的应用[J]. 计算机工程与应用,2020,56(8):270-278.(HU C Y, JIANG P, ZHOU G R. Application of improved ant colony algorithm in AGV path planning[J]. Computer Engineering and Applications,2020,56(8):270-278.) [9] 江明, 王飞, 葛愿, 等. 基于改进蚁群算法的移动机器人路径规划研究[J]. 仪器仪表学报,2019,40(2):113-121.(JIANG M, WANG F,GE Y,et al. Research on path planning of mobile robot based on improved ant colony algorithm[J]. Chinese Journal of Scientific Instrument,2019,40(2):113-121.) [10] 陈志, 韩兴国. 改进蚁群算法在移动机器人路径规划上的应用[J]. 计算机工程与设计,2020,41(8):2388-2395.(CHEN Z, HAN X G. Application of improved ant colony algorithm in mobile robot path planning[J]. Computer Engineering and Design,2020, 41(8):2388-2395.) [11] ZHANG Z L,PI Z Y,LIU B Y. TROIKA:a general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise[J]. IEEE Transactions on Biomedical Engineering,2015,62(2):522-531. [12] 王红君, 徐军, 赵辉, 等. 基于平滑蚁群算法的机器人路径规划[J]. 燕山大学学报,2017,41(3):278-282.(WANG H J,XU J,ZHAO H,et al. Mobile robot path planning based on smoothing ant colony algorithm[J]. Journal of Yanshan University,2017,41(3):278-282.) [13] 刘建华, 杨建国, 刘华平, 等. 基于势场蚁群算法的移动机器人全局路径规划方法[J]. 农业机械学报,2015,46(9):18-27. (LIU J H,YANG J G,LIU H P,et al. Global path planning method of mobile robot based on potential field ant colony algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(9):18-27.) [14] HAN G J,ZHOU Z R,ZHANG T W,et al. Ant-colony-based complete-coverage path-planning algorithm for underwater gliders in ocean areas with thermoclines[J]. IEEE Transactions on Vehicular Technology,2020,69(8):8959-8791. [15] YU C X,SHEN Z Y,LI P F. Route optimization of aquatic product transportation based on an improved ant colony algorithm[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics,2020,24(4):488-493. [16] 王岸雄. 基于ROS的自主移动机器人环境建模和路径规划研究[D]. 西安:西安理工大学,2020:1-7.(WANG A X. Research on environment modeling and path planning of autonomous mobile robot based on ROS[D]. Xi'an:Xi'an University of Technology,2020:1-7.) [17] ZHAO T,XIANG Y F,DIAN S Y,et al. Hierarchical interval type-2 fuzzy path planning based on genetic optimization[J]. Journal of Intelligent and Fuzzy Systems,2020,39(1):937-948. [18] WANG Z,LI J Q,FANG M L,et al. A multimetric ant colony optimization algorithm for dynamic path planning in vehicular networks[J]. International Journal of Distributed Sensor Networks,2015,11(10):No. 271067. [19] ZHANG Q,XIONG S W. Routing optimization of emergency grain distribution vehicles using the immune ant colony optimization algorithm[J]. Applied Soft Computing,2018,71:917-925. [20] DAI X L,LONG S,ZHANG Z W,et al. Mobile robot path planning based on ant colony algorithm with A* heuristic method[J]. Frontiers in Neurorobotics,2019,13:No. 15. [21] 梁凯, 毛剑琳. 基于改进蚁群算法的移动机器人动态路径规划[J]. 电子测量技术,2020,43(7):56-60.(LIANG K,MAO J L. Dynamic path planning of mobile robot based on improved ant colony algorithm[J]. Electronic Measurement Technology,2020, 43(7):56-60.) [22] LU L C,YUE T W. Mission-oriented ant-team ACO for min-max MTSP[J]. Applied Soft Computing,2020,22(3):436-444. [23] 李理, 李鸿, 单宁波. 多启发因素改进蚁群算法的路径规划[J]. 计算机工程与应用,2019,55(5):219-225,250.(LI L,LI H, SHAN N B. Path planning based on improved ant colony algorithm with multiple inspired factor[J]. Computer Engineering and Applications,2019,55(5):219-225,250.) [24] 曹新亮, 王智文, 冯晶, 等. 基于改进蚁群算法的机器人全局路径规划研究[J]. 计算机工程与科学,2020,42(3):564-570. (CAO X L,WANG Z W,FENG J,et al. Global path planning of robots based on improved ant colony algorithm[J]. Computer Engineering and Science,2020,42(3):564-570.) [25] ZHANG H M,LI M L,YANG L. Safe path planning of mobile robot based on improved A* algorithm in complex terrains[J]. Algorithms,2018,11(4):No. 44. [26] KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. The International Journal of Robotics Research,2011,30(7):846-894. [27] LUO Q, WANG H B, ZHENG Y, et al. Research on path planning of mobile robot based on improved ant colony algorithm[J]. Neural Computing and Applications,2020,32(6):1555-1566. |