[1] AVIZONIS P, BARRON B. Low cost wire detection system[C]//Proceedings of the 18th Digital Avionics Systems Conference. Piscataway:IEEE, 1999:3. C. 3. [2] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural network[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2015:91-99. [3] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2020-11-20]. https://arxiv.org/pdf/1409.1556.pdf. [4] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [5] REDMON J, FARHADI A. YOLOv3:an incremental improvement[EB/OL]. (2018-04-08)[2020-11-20]. https://arxiv.org/pdf/1804.02767.pdf. [6] LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham:Springer, 2016:21-37. [7] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:1331-1440. [8] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. [9] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham:Springer, 2018:833-851. [10] ZHU L L, CAO W R, HAN J D, et al. A double-side filter based power line recognition method for UAV vision system[C]//Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics. Piscataway:IEEE, 2013:2655-2660. [11] DU S Z, VAN WYK B J, TU C L. Heuristic Bayesian pixel classification for power line inspection[C]//Proceedings of the 3rd International Congress on Image and Signal Processing. Piscataway:IEEE, 2010:960-963. [12] SONG B Q, LI X L. Power line detection from optical images[J]. Neurocomputing, 2014, 129:350-361. [13] 韦盛. 基于图像处理的输电线识别与六旋翼巡检研究[D]. 合肥:合肥工业大学, 2020:14-29. (WEI S. Research on transmission line identification and helicopter inspection based on image processing[D]. Hefei:Hefei University of Technology, 2020:14-29.) [14] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham:Springer, 2015:234-241. [15] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL]. (2016-06-07)[2020-12-29]. https://arxiv.org/pdf/1412.7062.pdf. [16] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab:semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. [17] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. (2017-12-05)[2020-12-29]. https://arxiv.org/pdf/1706.05587.pdf. [18] 王栩文. 基于图像的输电线路语义分割技术研究[D]. 杭州:浙江大学, 2019:29-51.(WANG X W. Research on semantic segmentation of power line based on image[D]. Hangzhou:Zhejiang University, 2019:29-51.) [19] MADAAN R, MATURANA D, SCHERER S. Wire detection using synthetic data and dilated convolutional networks for unmanned aerial vehicles[C]//Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE, 2017:3487-3494. [20] ZHANG H, YANG W, YU H, et al. Detecting power lines in UAV images with convolutional features and structured constraints[J]. Remote Sensing, 2019, 11(11):No. 1342. [21] CHOI H, KOO G, KIM B J, et al. Weakly supervised power line detection algorithm using a recursive noisy label update with refined broken line segments[J]. Expert Systems with Applications, 2021, 165:No. 113895. [22] YETGIN Ö E, BENLIGIRAY B, GEREK Ö N. Power line recognition from aerial images with deep learning[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(5):2241-2252. [23] RUSSELL B C, TORRALBA A, MURPHY K P, et al. LabelMe:a database and web-based tool for image annotation[J]. International Journal of Computer Vision, 2008, 77(1/2/3):157-173. [24] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. New York:JMLR. org, 2015:448-456. [25] NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning. Madison, WI:Omnipress, 2010:807-814. [26] BADRINARAYANAN V, HANDA A, CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling[EB/OL]. (2015-05-27)[2020-12-20]. https://arxiv.org/pdf/1505.07293.pdf. [27] EIGEN D, FERGUS R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015:2650-2658. |