1 |
ADAMS N. Dataset shift in machine learning [J]. Journal of the Royal Statistical Society, 2010, 173(1):274-274. 10.1111/j.1467-985x.2009.00624_10.x
|
2 |
LU J, BEHBOOD V, HAO P, et al. Transfer learning using computational intelligence: a survey [J]. Knowledge-Based Systems, 2015, 80: 14-23. 10.1016/j.knosys.2015.01.010
|
3 |
MOTIION S, PICCIRILLI M, ADJEROH D A, et al. Unified deep supervised domain adaptation and generalization [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 5715-5725. 10.1109/iccv.2017.609
|
4 |
WANG J D, CHEN Y Q, HAO S J, et al. Balanced distribution adaptation for transfer learning [C]// Proceedings of the 2017 IEEE International Conference on Data Mining. Piscataway: IEEE, 2017:1129-1134. 10.1109/icdm.2017.150
|
5 |
LONG M S, WANG J M, DING G G, et al. Transfer feature learning with joint distribution adaptation [C]// Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013:2200-2207. 10.1109/iccv.2013.274
|
6 |
BUSTO P P, GALL J. Open set domain adaptation [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017:754-763. 10.1109/iccv.2017.88
|
7 |
唐宋,陈利娟,陈志贤,等.基于目标域局部近邻几何信息的域自适应图像分类方法[J].计算机应用,2017,37(4):1164-1168. 10.11772/j.issn.1001-9081.2017.04.1164
|
|
TANG S, CHEN L J, CHEN Z X, et al. Domain adaptation image classification based on target local-neighbor geometrical information [J]. Journal of Computer Applications, 2017, 37(4): 1164-1168. 10.11772/j.issn.1001-9081.2017.04.1164
|
8 |
GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks [J]. Journal of Machine Learning Research, 2016, 17: 1-35. 10.1007/978-3-319-58347-1_10
|
9 |
SUN B C, FENG J S, SAENKO K. Return of frustratingly easy domain adaptation [C]// Proceedings of the 2016 30th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 2058-2065.
|
10 |
LONG M S, CAO Y, WANG J M, et al. Learning transferable features with deep adaptation networks [C]// Proceedings of the 2015 32nd International Conference on Machine Learning. New York: ACM, 2015: 97-105.
|
11 |
BELKIN M, NIYOGI P, SINDHWANI V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples [J]. Journal of Machine Learning Research, 2006, 7: 2399-2434.
|
12 |
LONG M S, WANG J M, DING G G, et al. Adaptation regularization: a general framework for transfer learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5): 1076-1089. 10.1109/tkde.2013.111
|
13 |
BAKTASHMOTLAGH M, FARAKI M, DRUMMOND T, et al. Learning factorized representations for open-set domain adaptation [EB/OL]. [2020-12-09]. .
|
14 |
PAN S J, YANG Q. A survey on transfer learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. 10.1109/tkde.2009.191
|
15 |
刘晓龙,王士同.面向开放集图像分类的模糊域自适应方法[J].计算机科学与探索,2021,15(3):515-523. 10.1049/ipr2.12266
|
|
LIU X L, WANG S T. Fuzzy domain adaptation algorithm for open set image classification [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(3): 515-523. 10.1049/ipr2.12266
|
16 |
SAITO K, YAMAMOTO S, USHIKU Y, et al. Open set domain adaptation by backpropagation [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS11209. Cham: Springer, 2018: 156-171.
|
17 |
LIU H, CAO Z J, LONG M S, et al. Separate to adapt: open set domain adaptation via progressive separation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2922-2931. 10.1109/cvpr.2019.00304
|
18 |
SCHEIRER W J, DE REZENDE ROCHA A, SAPKOTA A, et al. Toward open set recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(7): 1757-1772. 10.1109/tpami.2012.256
|
19 |
王骏,王士同.基于混合距离学习的双指数模糊C均值算法[J].软件学报,2010,21(8):1878-1888. 10.3724/SP.J.1001.2010.03607
|
|
WANG J, WANG S T. Double indices FCM algorithm based on hybrid distance metric learning [J]. Journal of Software, 2010, 21(8): 1878-1888. 10.3724/SP.J.1001.2010.03607
|
20 |
ZUO H, ZHANG G Q, PEDRYCZ W, et al. Fuzzy regression transfer learning in Takagi-Sugeno fuzzy models [J]. IEEE Transactions on Fuzzy Systems, 2017, 25(6): 1795-1807. 10.1109/tfuzz.2016.2633376
|
21 |
SAENKO K, KULIS B, FRITZ M, et al. Adapting visual category models to new domains [C]// Proceedings of the 2010 European Conference on Computer Vision, LNCS6314. Berlin: Springer, 2010: 213-226.
|
22 |
GONG B Q, SHI Y, SHA F, et al. Geodesic flow kernel for unsupervised domain adaptation [C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 2066-2073. 10.1109/cvpr.2012.6247911
|
23 |
FERNANDO B, HABRARD A, SEBBAN M, et al. Unsupervised visual domain adaptation using subspace alignment [C]// Proceedings of the 2013 IEEE International Conference on Computer Vision. PiscatawayIEEE, 2013: 2960-2967. 10.1109/iccv.2013.368
|
24 |
史荧中,王士同,蒋亦樟,等.迁移学习支持向量回归机[J].计算机应用,2013,33(11):3084-3089. 10.11772/j.issn.1001-9081.2013.11.3084
|
|
SHI Y Z, WANG S T, JIANG Y Z, et al. Transfer learning support vector regression [J]. Journal of Computer Applications, 2013, 33(11): 3084-3089. 10.11772/j.issn.1001-9081.2013.11.3084
|
25 |
GOPALAN R, LI R N, CHELLAPPA R. Domain adaptation for object recognition: an unsupervised approach [C]// Proceedings of the 2011 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2011: 999-1006. 10.1109/iccv.2011.6126344
|