1 |
KHAN U, YASIN A, ABID M, et al. A methodological review of 3D reconstruction techniques in tomographic imaging[J]. Journal of Medical Systems, 2018, 42(10): No.190. 10.1007/s10916-018-1042-2
|
2 |
LV S Q, CHEN Y M, LI Z Y, et al. Application of time-frequency domain transform to three-dimensional interpolation of medical images[J]. Journal of Computational Biology, 2017, 24(11): 1112-1124. 10.1089/cmb.2017.0038
|
3 |
AFSHAR P, SHAHROUDNEJAD A, MOHAMMADI A, et al. CARISI: convolutional autoencoder-based inter-slice interpolation of brain tumor volumetric images [C]// Proceedings of the 25th IEEE International Conference on Image Processing. Piscataway: IEEE, 2018: 1458-1462. 10.1109/icip.2018.8451759
|
4 |
CHAO Z, KIM H J. Slice interpolation of medical images using enhanced fuzzy radial basis function neural networks[J]. Computers in Biology and Medicine, 2019, 110: 66-78. 10.1016/j.compbiomed.2019.05.013
|
5 |
郭钧锋,蔡元龙,王玉平.医学图像三维重建的插值方法研究[J]. CT理论与应用研究, 1994, 3(4): 7-11.
|
|
GUO J F, CAI Y L, WANG Y P. Investigation of interpolation methods for medical 3D reconstruction[J]. CT Theory and Applications, 1994, 3(4): 7-11.
|
6 |
徐艳蕾,赵继印,李敏,等.基于顺序形态学的医学图像插值算法的研究[J].电子学报, 2010, 38(5): 1002-1007. 10.1007/978-3-642-13199-8_2
|
|
XU Y L, ZHAO J Y, LI M, et al. The interpolation arithmetic study of medical image based on the order morphology[J]. Acta Electronica Sinica, 2010, 38(5): 1002-1007. 10.1007/978-3-642-13199-8_2
|
7 |
LIU S Q, XU D G, ZHOU S K, et al. 3D anisotropic hybrid network: transferring convolutional features from 2D images to 3D anisotropic volumes [C]// Proceedings of the 2018 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS11071. Cham: Springer, 2018: 851-858.
|
8 |
朱付平,田捷,林瑶,等.基于Level Set方法的医学图像分割[J].软件学报, 2002, 13(9): 1866-1872. 10.3969/j.issn.1007-0249.2003.06.017
|
|
ZHU F P, TIAN J, LIN Y, et al. Medical image segmentation based on Level Set method[J]. Journal of Software, 2002, 13(9): 1866-1872. 10.3969/j.issn.1007-0249.2003.06.017
|
9 |
GREVERA G J, UDUPA J K. Shape-based interpolation of multidimensional grey-level images[J]. IEEE Transactions on Medical Imaging, 1996, 15(6): 881-892. 10.1109/42.544506
|
10 |
PENG C, LIN W A, LIAO H F, et al. Deep slice interpolation via marginal super-resolution, fusion and refinement[EB/OL]. (2019-08-15) [2020-12-22]. . 10.1109/cvpr42600.2020.00777
|
11 |
DONG C, LOY C C, HE K M, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307. 10.1109/tpami.2015.2439281
|
12 |
YANG J C, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873. 10.1109/tip.2010.2050625
|
13 |
WANG Z H, CHEN J, HOI S C H. Deep learning for image super-resolution: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3365-3387. 10.1109/tpami.2020.2982166
|
14 |
SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1874-1883. 10.1109/cvpr.2016.207
|
15 |
LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 1132-1140. 10.1109/cvprw.2017.151
|
16 |
LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 105-114. 10.1109/cvpr.2017.19
|
17 |
高媛,刘志,秦品乐,等.基于深度残差生成对抗网络的医学影像超分辨率算法[J].计算机应用, 2018, 38(9): 2689-2695. 10.11772/j.issn.1001-9081.2018030574
|
|
GAO Y, LIU Z, QIN P L, et al.Medical image super-resolution algorithm based on deep residual generation adversarial network[J]. Journal of Computer Applications, 2018, 38(9): 2689-2695. 10.11772/j.issn.1001-9081.2018030574
|
18 |
ZHANG Y L, TIAN Y P, KONG Y, et al. Residual dense network for image super-resolution [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2472-2481. 10.1109/cvpr.2018.00262
|
19 |
ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS11211. Cham: Springer, 2018: 294-310. 10.1007/978-3-030-01234-2_18
|
20 |
HU X C, MU H Y, ZHANG X Y, et al. Meta-SR: a magnification-arbitrary network for super-resolution [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1575-1584. 10.1109/cvpr.2019.00167
|
21 |
LIU J, ZHANG W J, TANG Y T, et al. Residual feature aggregation network for image super-resolution [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2356-2365. 10.1109/cvpr42600.2020.00243
|
22 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745
|
23 |
KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153-1160. 10.1109/tassp.1981.1163711
|