1 |
夏隽, 毛哲. 加热炉燃烧器改造降低烟气NO_x排放[J].油气田环境保护, 2019, 29(3): 19-21,61.
|
|
XIA J, MAO Z. Revamping of heating furnace burner to reduce NOx emission from flue gas [J]. Environment Protection of Oil & Gas Fields, 2019, 29(3): 19-21,61.
|
2 |
欧阳福生, 凌巧, 虞正恺. 灵活多效催化裂化工艺反应动力学模型研究[J]. 高校化学工程学报, 2015,29(5): 1106-1113. 10.3969/j.issn.1003-9015.2015.00.025
|
|
OUYANG F S, LING Q, YU Z K. Reaction kinetic model for flexible dual-riser fluid catalytic cracking process [J]. Journal of Chemical Engineering of Chinese Universities, 2015,29(5): 1106-1113. 10.3969/j.issn.1003-9015.2015.00.025
|
3 |
孙世源, 孟凡东, 闫鸿飞, 等. 重油催化裂化14集总动力学模型研究[J]. 河南化工, 2017, 34(7): 29-34.
|
|
SUN S Y, MENG F D, YAN H F, et al. Research on 14 lumping kinetic model of heavy oil catalytic cracking [J]. Henan Chemical Industry, 2017, 34(7): 29-34.
|
4 |
栗伟, 苏宏业, 刘瑞兰. 粒子群优化算法在催化裂化模型参数估计中的应用[J].化工学报, 2010, 61(8): 1927-1932.
|
|
LI W, SU H Y, LIU R L. Parameter estimation of catalytic cracking model using PSO algorithm [J]. CIESC Journal, 2010, 61(8): 1927-1932.
|
5 |
JOHN Y M, MUSTAFA M A, PATELl R, et al. Parameter estimation of a six-lump kinetic model of an industrial fluid catalytic cracking unit [J]. Fuel, 2019, 235: 1436-1454. 10.1016/j.fuel.2018.08.033
|
6 |
GUO R, SHI D. Prediction of C3 concentration in FCCU using neural estimator based on dynamic PCA [C]// Proceedings of the 2009 International Conference on Computational Intelligence & Security. Washington, DC: IEEE Computer Society, 2009: 34-37. 10.1109/cis.2009.242
|
7 |
WANG Y, ZHANG X, WANG X, et al. Text sentiment analysis based on parallel recursive constituency Tree-LSTM [C]// Proceedings of the 2019 IEEE 4th International Conference on Data Science in Cyberspace. Piscataway: IEEE, 2019: 156-161. 10.1109/dsc.2019.00031
|
8 |
SEZER O B, GUDELEK U, OZBBAYOGLU M. Financial time series forecasting with deep learning: a systematic literature review: 2005 — 2019 [J]. Applied Soft Computing, 2020, 90: 106181. 10.1016/j.asoc.2020.106181
|
9 |
NIU H, XU K, WANG W. A hybrid stock price index forecasting model based on variational mode decomposition and LSTM network [J]. Applied Intelligence, 2020, 50: 4296-4309. 10.1007/s10489-020-01814-0
|
10 |
ZHAO A, QI L, DONG J, et al. Dual channel LSTM based multi-feature extraction in gait for diagnosis of neurodegenerative diseases [J]. Knowledge-Based Systems, 2018, 145: 91-97. 10.1016/j.knosys.2018.01.004
|
11 |
CHEN R, WANG X, ZHANG W, et al. A hybrid CNN-LSTM model for typhoon formation forecasting [J]. GeoInformatica, 2019, 23: 375-96. 10.1007/s10707-019-00355-0
|
12 |
WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
|
13 |
贾雨杰, 陈鹏蕾, 朱莉. 基于EEMD-ARIMA模型的气温预测研究 [J]. 统计学与应用, 2020, 9(2): 304-311. 10.12677/SA.2020.92033
|
|
JIA Y J, CHEN P L, ZHU L. Prediction of temperature based on EEMD-ARIMA model [J]. Statistics and Applications, 2020, 9(2): 304-311. 10.12677/SA.2020.92033
|
14 |
王红军,万鹏.基于EEMD和小波包变换的早期故障敏感特征获取[J]. 北京理工大学学报, 2013, 33(9): 945-950. 10.3969/j.issn.1001-0645.2013.09.014
|
|
WANG H J, WAN P. Sensitive features extraction of early fault based on EEMD and WPT [J]. Transactions of Beijing Institute of Technology, 2013, 33(9): 945-950. 10.3969/j.issn.1001-0645.2013.09.014
|
15 |
孟安波, 邵慧栋, 殷豪. 基于EEMD和LSTM的负荷预测方法,装置及设备: CN108985514A[P]. 2018-12-11.
|
|
MENG A B, SHAO H D, YIN H. Load forecasting methods, devices and equipment based on EEMD and LSTM: CN108985514A[P]. 2018-12-11.
|
16 |
HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, 1998, 454(1971): 903-995. 10.1098/rspa.1998.0193
|
17 |
杨丽, 吴雨茜, 王俊丽,等. 循环神经网络研究综述[J]. 计算机应用, 2018, 38(S2): 6-11,31. 10.1109/ijcnn.2018.8489331
|
|
YANG L, WU Y X, WANG J L, et al. Research on recurrent neural network [J]. Journal of Computer Applications, 2018, 38(S2): 6-11,31. 10.1109/ijcnn.2018.8489331
|
18 |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735-1780. 10.1162/neco.1997.9.8.1735
|