| 1 | 杜培军,夏俊士,薛朝辉,等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016, 20(2):236-256.  10.11834/jrs.20155022 | 
																													
																						|  | DU P J, XIA J S, XUE Z H, et al. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 2016, 20(2): 236-256.  10.11834/jrs.20155022 | 
																													
																						| 2 | 王相海,王顺,谢释铖,等. 高光谱图像光谱维结构相关性及稀疏重建模型[J]. 中国科学:信息科学, 2021, 51(3):449-467.  10.1360/ssi-2019-0229 | 
																													
																						|  | WANG X H, WANG S, XIE S C, et al. Spectral dimensional structure correlation and sparse reconstruction model of hyperspectral images[J]. SCIENTIA SINICA Informationis, 2021, 51(3): 449-467.  10.1360/ssi-2019-0229 | 
																													
																						| 3 | 王姗姗. 高光谱图像特征提取和分类算法研究[D]. 大连:辽宁师范大学, 2020:1473-1519. | 
																													
																						|  | WANG S S. Research on hyperspectral image feature extraction and classification algorithm[D]. Dalian: Liaoning Normal University, 2020:1473-1519. | 
																													
																						| 4 | 杨随心,耿修瑞,杨炜暾,等. 一种基于谱聚类算法的高光谱遥感图像分类方法[J]. 中国科学院大学学报, 2019, 36(2):267-274.  10.7523/j.issn.2095-6134.2019.02.015 | 
																													
																						|  | YANG S X, GENG X R, YANG W T, et al. A method of hyperspectral remote sensing image classification based on spectral clustering[J]. Journal of University of Chinese Academy of Sciences, 2019, 36(2): 267-274.  10.7523/j.issn.2095-6134.2019.02.015 | 
																													
																						| 5 | 许裕雄,杨晓君,蔡湧达,等. 基于二叉树锚点的高光谱快速聚类算法[J]. 激光与光电子学进展, 2021, 58(2): No.0210021.  10.3788/lop202158.0210021 | 
																													
																						|  | XU Y X, YANG X J, CAI Y D, et al. Hyperspectral fast clustering algorithm based on binary tree anchor points[J]. Laser and Optoelectronics Progress, 2021, 58(2): No.0210021.  10.3788/lop202158.0210021 | 
																													
																						| 6 | JIANG J J, MA J Y, CHEN C, et al. SuperPCA: a superpixelwise PCA approach for unsupervised feature extraction of hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8):4581-4593.  10.1109/tgrs.2018.2828029 | 
																													
																						| 7 | BEIRAMI B A, MOKHTARZADE M. Band grouping SuperPCA for feature extraction and extended morphological profile production from hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(11): 1953-1957.  10.1109/lgrs.2019.2958833 | 
																													
																						| 8 | 雷存款. 高光谱影像降维与谱-空分类方法研究[D]. 大连:辽宁师范大学, 2020:1216-1278. | 
																													
																						|  | LEI C K. Research on dimensionality reduction and spectral-spatial classification methods for hyperspectral image[D]. Dalian: Liaoning Normal University, 2020:1216-1278. | 
																													
																						| 9 | WANG R, NIE F P, YU W Z. Fast spectral clustering with anchor graph for large hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11):2003-2007.  10.1109/lgrs.2017.2746625 | 
																													
																						| 10 | ZHU W, NIE F P, LI X L. Fast spectral clustering with efficient large graph construction[C]// Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2017: 2492-2496.  10.1109/icassp.2017.7952605 | 
																													
																						| 11 | YANG X J, YU W Z, WANG R, et al. Fast spectral clustering learning with hierarchical bipartite graph for large-scale data[J]. Pattern Recognition Letters, 2020, 130:345-352.  10.1016/j.patrec.2018.06.024 | 
																													
																						| 12 | 赵蔷. 主成分分析方法综述[J]. 软件工程, 2016, 19(6):1-3.  10.3969/j.issn.1008-0775.2016.06.001 | 
																													
																						|  | ZHAO Q. A review of principal component analysis[J]. Software Engineering, 2016, 19(6): 1-3.  10.3969/j.issn.1008-0775.2016.06.001 | 
																													
																						| 13 | LUO M, BORS A G. Principal component analysis of spectral coefficients for mesh watermarking[C]// Proceedings of the 15th IEEE International Conference on Image Processing. Piscataway: IEEE, 2008: 441-444.  10.1109/icip.2008.4711786 | 
																													
																						| 14 | LI J Y, ZHANG H Y, ZHANG L P. Efficient superpixel-level multitask joint sparse representation for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10): 5338-5351.  10.1109/tgrs.2015.2421638 | 
																													
																						| 15 | MA J Y, LI C, MA Y, et al. Hyperspectral image denoising based on low-rank representation and superpixel segmentation[C]// Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway: IEEE, 2016: 3086-3090.  10.1109/icip.2016.7532927 | 
																													
																						| 16 | TANG Y W, ZHAO L Y, REN L. Different versions of entropy rate superpixel segmentation for hyperspectral image[C]// Proceedings of the IEEE 4th International Conference on Signal and Image Processing. Piscataway: IEEE, 2019: 1050-1054.  10.1109/siprocess.2019.8868344 | 
																													
																						| 17 | 陈永,卢晨涛. 基于超像素分割和暗亮通道结合的单幅图像去雾[J]. 激光与光电子学进展, 2020, 57(16): No.161023.  10.3788/lop57.161023 | 
																													
																						|  | CHEN Y, LU C T. Single image dehazing based on superpixel segmentation combined with dark-bright channels[J]. Laser and Optoelectronics Progress, 2020, 57(16): No.161023.  10.3788/lop57.161023 | 
																													
																						| 18 | NIE F P, ZHU W, LI X L. Unsupervised large graph embedding based on balanced and hierarchical K-means[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(4):2008-2019. | 
																													
																						| 19 | NIE F P, WANG X Q, JORDAN M I, et al. The constrained Laplacian rank algorithm for graph-based clustering[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2016:1969-1976.  10.1609/aaai.v30i1.10302 | 
																													
																						| 20 | WANG R, NIE F P, WANG Z, et al. Scalable graph-based clustering with nonnegative relaxation for large hyperspectral image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10):7352-7364.  10.1109/tgrs.2019.2913004 | 
																													
																						| 21 | YANG X J, LIN G Q, LIU Y J, et al. Fast spectral embedded clustering based on structured graph learning for large-scale hyperspectral image[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: No.5501705.  10.1109/lgrs.2020.3035677 |