《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (4): 1260-1268.DOI: 10.11772/j.issn.1001-9081.2021071258
所属专题: CCF第36届中国计算机应用大会 (CCF NCCA 2021)
• CCF第36届中国计算机应用大会 (CCF NCCA 2021) • 上一篇 下一篇
收稿日期:
2021-07-16
修回日期:
2021-08-26
接受日期:
2021-08-30
发布日期:
2021-08-26
出版日期:
2022-04-10
通讯作者:
陈爱斌
作者简介:
刘志华(1996—),男,湖南邵阳人,硕士研究生,主要研究方向:深度学习、音频分类基金资助:
Zhihua LIU1,2, Wenjie CHEN1,2, Aibin CHEN1,2()
Received:
2021-07-16
Revised:
2021-08-26
Accepted:
2021-08-30
Online:
2021-08-26
Published:
2022-04-10
Contact:
Aibin CHEN
About author:
LIU Zhihua, born in 1996, M. S. candidate. His research interests include deep learning, audio classification.Supported by:
摘要:
目前深度学习模型大都难以应对复杂背景噪声下的鸟鸣声分类问题。考虑到鸟鸣声具有时域连续性、频域高低性特点,提出了一种利用同源谱图特征进行融合的模型用于复杂背景噪声下的鸟鸣声分类。首先,使用卷积神经网络(CNN)提取鸟鸣声梅尔时频谱特征;然后,使用特定的卷积以及下采样操作,将同一梅尔时频谱特征的时域和频域维度分别压缩至1,得到仅包含鸟鸣声高低特性的频域特征以及连续特性的时域特征。基于上述提取频域以及时域特征的操作,在时域和频域维度上同时对梅尔时频谱特征进行提取,得到具有连续性以及高低特性的时频域特征。然后,将自注意力机制分别用于得到的时域、频域、时频域特征以加强其各自拥有的特性。最后,将这三类同源谱图特征决策融合后的结果用于鸟鸣声分类。所提模型用于Xeno-canto网站的8种鸟类音频分类,并在分类对比实验中取得了平均精确率(MAP)为0.939的较好结果。实验结果表明该模型能应对复杂背景噪声下的鸟鸣声分类效果较差的问题。
中图分类号:
刘志华, 陈文洁, 陈爱斌. 基于自注意力机制时频谱同源特征融合的鸟鸣声分类[J]. 计算机应用, 2022, 42(4): 1260-1268.
Zhihua LIU, Wenjie CHEN, Aibin CHEN. Homologous spectrogram feature fusion with self-attention mechanism for bird sound classification[J]. Journal of Computer Applications, 2022, 42(4): 1260-1268.
网络层 | 输入大小 | 输出大小 | 滤波器数量 | 滤波器大小 | 步长 |
---|---|---|---|---|---|
1 | 80×600 | 8×79×600 | 8 | [2,1] | [1,1] |
2 | 8×79×600 | 8×39×600 | ― | [3,1] | [2,1] |
3 | 8×39×600 | 8×19×600 | 8 | [3,1] | [2,1] |
4 | 8×19×600 | 8×9×600 | ― | [3,1] | [2,1] |
5 | 8×9×600 | 8×4×600 | 8 | [3,1] | [2,1] |
6 | 8×4×600 | 8×2×600 | ― | [2,1] | [2,1] |
7 | 8×2×600 | 8×1×600 | ― | [2,1] | [2,1] |
表1 提取t特征的网络参数设置
Tab. 1 Parameter settings of the network to extract t feature
网络层 | 输入大小 | 输出大小 | 滤波器数量 | 滤波器大小 | 步长 |
---|---|---|---|---|---|
1 | 80×600 | 8×79×600 | 8 | [2,1] | [1,1] |
2 | 8×79×600 | 8×39×600 | ― | [3,1] | [2,1] |
3 | 8×39×600 | 8×19×600 | 8 | [3,1] | [2,1] |
4 | 8×19×600 | 8×9×600 | ― | [3,1] | [2,1] |
5 | 8×9×600 | 8×4×600 | 8 | [3,1] | [2,1] |
6 | 8×4×600 | 8×2×600 | ― | [2,1] | [2,1] |
7 | 8×2×600 | 8×1×600 | ― | [2,1] | [2,1] |
网络层 | 输入大小 | 输出大小 | 滤波器数量 | 滤波器大小 | 步长 |
---|---|---|---|---|---|
1 | 80×600 | 8×80×300 | 8 | [ | [ |
2 | 8×80×300 | 8×80×150 | ― | [ | [ |
3 | 8×80×150 | 8×80×50 | 8 | [ | [ |
4 | 8×80×50 | 8×80×25 | ― | [ | [ |
5 | 8×80×25 | 8×80×8 | 8 | [ | [ |
6 | 8×80×8 | 8×80×2 | ― | [ | [ |
7 | 8×80×2 | 8×80×1 | ― | [ | [ |
表2 提取p特征的网络参数设置
Tab. 2 Parameter settings of the network to extract p feature
网络层 | 输入大小 | 输出大小 | 滤波器数量 | 滤波器大小 | 步长 |
---|---|---|---|---|---|
1 | 80×600 | 8×80×300 | 8 | [ | [ |
2 | 8×80×300 | 8×80×150 | ― | [ | [ |
3 | 8×80×150 | 8×80×50 | 8 | [ | [ |
4 | 8×80×50 | 8×80×25 | ― | [ | [ |
5 | 8×80×25 | 8×80×8 | 8 | [ | [ |
6 | 8×80×8 | 8×80×2 | ― | [ | [ |
7 | 8×80×2 | 8×80×1 | ― | [ | [ |
网络层 | 输入大小 | 输出大小 | 滤波器数量 | 滤波器大小 | 步长 |
---|---|---|---|---|---|
1 | 80×600 | 8×79×300 | 8 | [2,2] | [ |
2 | 8×79×300 | 8×39×150 | ― | [3,2] | [2,2] |
3 | 8×39×150 | 8×19×50 | 8 | [3,3] | [ |
4 | 8×19×50 | 8×9×25 | ― | [3,2] | [2,2] |
表3 提取pt特征的网络参数设置
Tab. 3 Parameter settings of the network to extract pt feature
网络层 | 输入大小 | 输出大小 | 滤波器数量 | 滤波器大小 | 步长 |
---|---|---|---|---|---|
1 | 80×600 | 8×79×300 | 8 | [2,2] | [ |
2 | 8×79×300 | 8×39×150 | ― | [3,2] | [2,2] |
3 | 8×39×150 | 8×19×50 | 8 | [3,3] | [ |
4 | 8×19×50 | 8×9×25 | ― | [3,2] | [2,2] |
种类 | 原始音频 数量 | 最终实验 样本数量 | 种类 | 原始音频 数量 | 最终实验 样本数量 |
---|---|---|---|---|---|
灰雁 | 330 | 2 244 | 叽喳柳莺 | 837 | 3 569 |
普通鵟 | 395 | 3 104 | 欧柳莺 | 512 | 2 650 |
金黄鹂 | 539 | 3 784 | 喜鹊 | 450 | 2 673 |
大山雀 | 927 | 2 525 | 乌鸫 | 512 | 3 012 |
表4 每种鸟类的实验样本数量
Tab. 4 Number of experimental samples per bird species
种类 | 原始音频 数量 | 最终实验 样本数量 | 种类 | 原始音频 数量 | 最终实验 样本数量 |
---|---|---|---|---|---|
灰雁 | 330 | 2 244 | 叽喳柳莺 | 837 | 3 569 |
普通鵟 | 395 | 3 104 | 欧柳莺 | 512 | 2 650 |
金黄鹂 | 539 | 3 784 | 喜鹊 | 450 | 2 673 |
大山雀 | 927 | 2 525 | 乌鸫 | 512 | 3 012 |
实验序号 | 方法 | 输入类型 | 输入大小 | 准确率 |
---|---|---|---|---|
1 | 2DCNN+FC+FC(p) | Image | 80×600 | 0.896 |
2 | 2DCNN+GRU+GRU(t) | Image | 80×600 | 0.804 |
3 | 2DCNN+FC+FC(pt) | Image | 80×600 | 0.872 |
4 | Experiment(1+2+3)+Decision-fusion | Image | 80×600 | 0.923 |
5 | Experiment(1+2+3)+Self-attention+Decision-fusion | Image | 80×600 | 0.939 |
表5 自对比实验结果
Tab. 5 Self-comparison experiment results
实验序号 | 方法 | 输入类型 | 输入大小 | 准确率 |
---|---|---|---|---|
1 | 2DCNN+FC+FC(p) | Image | 80×600 | 0.896 |
2 | 2DCNN+GRU+GRU(t) | Image | 80×600 | 0.804 |
3 | 2DCNN+FC+FC(pt) | Image | 80×600 | 0.872 |
4 | Experiment(1+2+3)+Decision-fusion | Image | 80×600 | 0.923 |
5 | Experiment(1+2+3)+Self-attention+Decision-fusion | Image | 80×600 | 0.939 |
Types | Precision | Recall | F1-score | 数据数量 |
---|---|---|---|---|
灰雁 | 0.962 | 0.922 | 0.941 | 689 |
普通鵟 | 0.924 | 0.918 | 0.921 | 955 |
金黄鹂 | 0.885 | 0.945 | 0.914 | 1 162 |
大山雀 | 0.992 | 0.950 | 0.970 | 743 |
叽喳柳莺 | 0.982 | 0.971 | 0.977 | 1 038 |
欧柳莺 | 0.912 | 0.966 | 0.938 | 754 |
喜鹊 | 0.952 | 0.949 | 0.950 | 819 |
乌鸫 | 0.924 | 0.882 | 0.903 | 908 |
Micro average | 0.942 | 0.938 | 0.938 | 7 068 |
Macro average | 0.942 | 0.938 | 0.939 | 7 068 |
Weighted average | 0.939 | 0.938 | 0.938 | 7 068 |
表6 混淆矩阵分析结果
Tab. 6 Confusion matrix analysis results
Types | Precision | Recall | F1-score | 数据数量 |
---|---|---|---|---|
灰雁 | 0.962 | 0.922 | 0.941 | 689 |
普通鵟 | 0.924 | 0.918 | 0.921 | 955 |
金黄鹂 | 0.885 | 0.945 | 0.914 | 1 162 |
大山雀 | 0.992 | 0.950 | 0.970 | 743 |
叽喳柳莺 | 0.982 | 0.971 | 0.977 | 1 038 |
欧柳莺 | 0.912 | 0.966 | 0.938 | 754 |
喜鹊 | 0.952 | 0.949 | 0.950 | 819 |
乌鸫 | 0.924 | 0.882 | 0.903 | 908 |
Micro average | 0.942 | 0.938 | 0.938 | 7 068 |
Macro average | 0.942 | 0.938 | 0.939 | 7 068 |
Weighted average | 0.939 | 0.938 | 0.938 | 7 068 |
实验序号 | 模型 | 输入类型 | 输入大小 | 准确率 |
---|---|---|---|---|
1 | 2DCNN+FC | Image | 80×600 | 0.872 |
2 | LSTM+FC | Image | 80×600 | 0.868 |
3 | SPFN | Continuous frame sequence | 150×80×6 | 0.932 |
4 | 本文模型 | Image | 80×600 | 0.939 |
表7 与其他模型对比实验结果
Tab. 7 Comparison of experimental results with other models
实验序号 | 模型 | 输入类型 | 输入大小 | 准确率 |
---|---|---|---|---|
1 | 2DCNN+FC | Image | 80×600 | 0.872 |
2 | LSTM+FC | Image | 80×600 | 0.868 |
3 | SPFN | Continuous frame sequence | 150×80×6 | 0.932 |
4 | 本文模型 | Image | 80×600 | 0.939 |
1 | 李朝洪,赵晓红.黑龙江省森工国有林区生态建设与经济转型协调发展研究[J].南京林业大学学报(自然科学版),2019,43(2):144-152. 10.3969/j.issn.1000-2006.201804022 |
LI C H, ZHAO X H. Study on the coordinated development of ecological construction and economic transformation in state-owned forest region of forest industry in Heilongjiang Province[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43(2): 144-152. 10.3969/j.issn.1000-2006.201804022 | |
2 | QIAO Y, QIAN K, ZHAO Z P. Learning higher representations from bioacoustics: a sequence-to-sequence deep learning approach for bird sound classification[C]// Proceedings of the 2020 International Conference on Neural Information Processing. Cham: Springer, 2020: 130-138. 10.1007/978-3-030-63823-8_16 |
3 | LEE C H, CHOU C H, HAN C C, et al. Automatic recognition of animal vocalizations using averaged MFCC and linear discriminant analysis[J]. Pattern Recognition Letters, 2006, 27(2): 93-101. 10.1016/j.patrec.2005.07.004 |
4 | DONG X Y, JIA J P. Advances in automatic bird species recognition from environmental audio[C]// Proceedings of the 5th International Conference on Intelligent Computing and Signal Proceeding. Suzhou: Journal of Physics: Conference Series, 2020: 012110. 10.1088/1742-6596/1544/1/012110 |
5 | LENG Y R, TRAN H D. Multi-label bird classification using an ensemble classifier with simple features[C]// Proceedings of the 2014 Signal and Information Processing Association Annual Summit and Conference. Piscataway: IEEE, 2014: 1-5. 10.1109/apsipa.2014.7041649 |
6 | CHEN Z X, MAHER R C. Semi-automatic classification of bird vocalizations using spectral peak tracks[J]. The Journal of the Acoustical Society of America, 2006, 120(5): 2974-2984. 10.1121/1.2345831 |
7 | FAGERLUND S. Bird species recognition using support vector machines[J]. EURASIP Journal on Advances in Signal Processing, 2007, 2007: 38637.1-38637.8. 10.1155/2007/38637 |
8 | QIAN K, GUO J, ISHIDA K, et al. Fast recognition of bird sounds using extreme learning machines[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2017, 12(2): 294-296. 10.1002/tee.22378 |
9 | TAN L N, ALWAN A. Dynamic time warping and sparse representation classification for birdsong phrase classification using limited training data[J]. The Journal of the Acoustical Society of America, 2015, 137(3): 1069-1080. 10.1121/1.4906168 |
10 | 阙鑫华,乔倩,蒋慧,等.基于改进DTW算法的海岛水鸟鸣声识别应用研究[J].农村经济与科技,2021,32(11):320-322. 10.3969/j.issn.1007-7103.2021.11.117 |
QUE X H, QIAO Q, JIANG H, et al. Application research of island waterbird song recognition based on improved DTW algorithm[J]. Rural Economy and Science-Technology, 2021, 32(11): 320-322. 10.3969/j.issn.1007-7103.2021.11.117 | |
11 | JANČOVIČ P, KÖKÜER M, RUSSELL M. Bird species recognition from field recordings using HMM-based modelling of frequency tracks[C]// Proceedings of the 2014 International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2014: 8252-8256. 10.1109/icassp.2014.6855210 |
12 | WIELGAT R, POTEMPA T, ŚWIETOJAŃSKI P, et al. On using prefiltration in HMM-based bird species recognition[C]// Proceedings of the 2012 International Conference on Signals and Electronic Systems. Piscataway: IEEE, 2012: 1-5. 10.1109/icses.2012.6382258 |
13 | SPRINGER J, DUAN Z, PARDO B. Approaches to multiple concurrent species bird song recognition[C]// Proceedings of the 2nd International Workshop on Machine Listening in Multisource Environments. Piscataway: IEEE, 2013: 85-86. |
14 | ACEVEDO M A, CORRADA-BRAVO C J, CORRADA-BRAVO H, et al. Automated classification of bird and amphibian calls using machine learning: a comparison of methods[J]. Ecological Informatics, 2009, 4(4): 206-214. 10.1016/j.ecoinf.2009.06.005 |
15 | 张赛花,赵兆,许志勇,等.基于Mel子带参数化特征的自动鸟鸣识别[J].计算机应用,2017,37(4):1111-1115. 10.11772/j.issn.1001-9081.2017.04.1111 |
ZHANG S H, ZHAO Z, XU Z Y, et al. Automatic bird vocalization identification based on Mel-subband parameterized feature[J]. Journal of Computer Applications, 2017, 37(4): 1111-1115. 10.11772/j.issn.1001-9081.2017.04.1111 | |
16 | LEE C H, HSU S B, SHIH J L, et al. Continuous birdsong recognition using Gaussian mixture modeling of image shape features[J]. IEEE Transactions on Multimedia, 2012, 15(2): 454-464. 10.1109/tmm.2012.2229969 |
17 | HINTON G, DENG L, YU D, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82-97. 10.1109/msp.2012.2205597 |
18 | ZHANG H, MCLOUGHLIN I, SONG Y. Robust sound event recognition using convolutional neural networks[C]// Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2015: 559-563. 10.1109/icassp.2015.7178031 |
19 | ZHANG X, CHEN A B, ZHOU G X, et al. Spectrogram-frame linear network and continuous frame sequence for bird sound classification[J]. Ecological Informatics, 2019, 54: 101009. 10.1016/j.ecoinf.2019.101009 |
20 | SPRENGEL E, JAGGI M, KILCHER Y, et al. Audio based bird species identification using deep learning techniques[C]// Proceedings of the 2016 Conference and Labs of the Evaluation Forum. Cham: Springer, 2016: 547-559. |
21 | KOOPS H V, BALEN J V, WIERING F. A deep neural network approach to the LifeCLEF 2014 bird task[J]. CLEF2014 Working Notes, 2014, 1180: 634. |
22 | SANKUPELLAY M, KONOVALOV D. Bird call recognition using deep convolutional neural network, ResNet-50[C]// Proceedings of the 2018 International Conference on ACOUSTICS. New York: Curran Associates Inc., 2018, 7: 1-8. |
23 | HUANG G, LIU Z, MAATEN L V D, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. 10.1109/cvpr.2017.243 |
24 | TAKAHASH N, GYGLI M, GOOL L VAN. AENet: Learning deep audio features for video analysis[J]. IEEE Transactions on Multimedia, 2018, 20(3): 513-524. 10.1109/tmm.2017.2751969 |
25 | NARANCHIMEG B, ZHANG C, AKASHI T. Cross-domain deep feature combination for bird species classification with audio-visual data[J]. IEICE Transactions on Information and Systems, 2019, 102(10): 2033-2042. 10.1587/transinf.2018edp7383 |
26 | XIE J, HU K, ZHU M Y, et al. Investigation of different CNN-based models for improved bird sound classification[J]. IEEE Access, 2019, 7: 175353-175361. 10.1109/access.2019.2957572 |
27 | 谢将剑,杨俊,邢照亮,等.多特征融合的鸟类物种识别方法[J].应用声学,2020,39(2):199-206. 10.11684/j.issn.1000-310X.2020.02.005 |
XIE J J, YANG J, XING Z L, et al. Bird species recognition method based on multi-feature fusion[J]. Journal of Applied Acoustics, 2020, 39(2): 199-206. 10.11684/j.issn.1000-310X.2020.02.005 | |
28 | GRAVES A, MOHAMED A, HINTON G. Speech recognition with deep recurrent neural networks[C]// Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2013: 6645-6649. 10.1109/icassp.2013.6638947 |
29 | MÜLLER L, MARTÍ M. Bird sound classification using a bidirectional LSTM[C]// CLEF 2018:Proceedings of the 2018 Conference on Bird Conference and Labs of the Evaluation Forum. Cham: Sprinter, 2018: 134.1-134.13. |
30 | 邢照亮,吴伟银,张正晓,等.基于C-LSTM的鸟鸣声识别方法[J].科技创新与应用,2021,11(15):15-18. |
XING Z L, WU W Y, ZHANG Z X, et al. Birdsong recognition method based on C-LSTM[J]. Technological Innovation and Application, 2021, 11(15): 15-18. | |
31 | HIMAWAN I, TOWSEY M, ROE P. 3D convolution recurrent neural networks for bird sound detection[C]// Proceedings of the 3rd Workshop on Detection and Classification of Acoustic Scenes and Events. Västra Finlands län: Tampere University of Technology, 2018: 108-112. |
32 | PEI S C, DING J J. Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing[J]. IEEE Transactions on Signal Processing, 2007, 55(10): 4839-4850. 10.1109/tsp.2007.896271 |
33 | NEAL L, BRIGGS F, RAICH R, et al. Time-frequency segmentation of bird song in noisy acoustic environments[C]// Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, Piscataway: IEEE, 2011: 2012-2015. 10.1109/icassp.2011.5946906 |
34 | WANG W, YANG N, WEI F, et al. Gated self-matching networks for reading comprehension and question answering[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2017: 189-198. 10.18653/v1/p17-1018 |
35 | NUTTALL A. Some windows with very good sidelobe behavior[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(1): 84-91. 10.1109/tassp.1981.1163506 |
36 | LEE C H, HAN C C, CHUANG C C. Automatic classification of bird species from their sounds using two-dimensional cepstral coefficients[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2008, 16(8): 1541-1550. 10.1109/tasl.2008.2005345 |
37 | MCFEE B, RAFFEL C, LIANG D, et al. Librosa: audio and music signal analysis in python[EB/OL].[2021-05-30].. 10.25080/majora-7b98e3ed-003 |
38 | STEVENS S S, VOLKMANN J, NEWMAN E B. A scale for the measurement of the psychological magnitude pitch[J]. The Journal of the Acoustical Society of America, 1937, 8(3): 185-190. 10.1121/1.1915893 |
39 | LAVANYA S, LAVANYA D, NELATURI N. Random forest algorithm for recognition of bird species using audio recordings [J]. International Journal of Technology Management, 2018, 8(11),90-94. |
40 | BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling [EB/OL]. [2018-04-19]. . |
41 | KAHL S, WILHELM-STEIN T, KLINCK H, et al. Recognizing birds from sound-the 2018 BirdCLEF baseline system [EB/OL]. [2018-04-19]. . |
42 | KOOPS H, BALEN J VAN, WIERING F. A deep neural network approach to the lifeclef 2014 bird task[J]. Conference and Labs of the Evaluation Forum 2014 Working Notes, 2014, 1180: 634-642. |
43 | GUO J X, XU N, LI L J, et al. Attention based CLDNNs for short-duration acoustic scene classification[C]// Proceedings of the 2017 Conference on Interspeech. Stockholm: International Speech Communication Association, 2017: 469-473. |
44 | TIELEMAN T, HINTON G. Lecture 6.5—RMSprop: Divide the gradient by a running average of its recent magnitude[J]. COURSERA: Neural Networks for Machine Learning, 2012, 4(2): 26-31. |
45 | CHEN X, ZHOU G X, CHEN A B, et al. Identification of tomato leaf diseases based on combination of ABCK-BWTR and B-ARNet[J]. Computers and Electronics in Agriculture, 2020, 178: 105730. 10.1016/j.compag.2020.105730 |
46 | YI J Z, CHEN A B, CAI Z X, et al. Facial expression recognition of intercepted video sequences based on feature point movement trend and feature block texture variation[J]. Applied Soft Computing, 2019, 82: 105540. 10.1016/j.asoc.2019.105540 |
47 | 刘伟波,曾庆宁,卜玉婷,等. 基于双微阵列与卷积神经网络的语音识别方法[J].计算机应用,2019,39(11):3268-3273. |
LIU W B, ZENG Q N, BU Y T, et al. Automatic bird vocalization identification based on mel-subband parameterized feature[J]. Journal of Computer Applications, 2019,39(11):3268-3273. |
[1] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[2] | 王熙源, 张战成, 徐少康, 张宝成, 罗晓清, 胡伏原. 面向手术导航3D/2D配准的无监督跨域迁移网络[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2911-2918. |
[3] | 李力铤, 华蓓, 贺若舟, 徐况. 基于解耦注意力机制的多变量时序预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2732-2738. |
[4] | 黄云川, 江永全, 黄骏涛, 杨燕. 基于元图同构网络的分子毒性预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2964-2969. |
[5] | 潘烨新, 杨哲. 基于多级特征双向融合的小目标检测优化模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2871-2877. |
[6] | 李云, 王富铕, 井佩光, 王粟, 肖澳. 基于不确定度感知的帧关联短视频事件检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2903-2910. |
[7] | 李顺勇, 李师毅, 胥瑞, 赵兴旺. 基于自注意力融合的不完整多视图聚类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2696-2703. |
[8] | 陈虹, 齐兵, 金海波, 武聪, 张立昂. 融合1D-CNN与BiGRU的类不平衡流量异常检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2493-2499. |
[9] | 赵宇博, 张丽萍, 闫盛, 侯敏, 高茂. 基于改进分段卷积神经网络和知识蒸馏的学科知识实体间关系抽取[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2421-2429. |
[10] | 张春雪, 仇丽青, 孙承爱, 荆彩霞. 基于两阶段动态兴趣识别的购买行为预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2365-2371. |
[11] | 刘禹含, 吉根林, 张红苹. 基于骨架图与混合注意力的视频行人异常检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2551-2557. |
[12] | 顾焰杰, 张英俊, 刘晓倩, 周围, 孙威. 基于时空多图融合的交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2618-2625. |
[13] | 石乾宏, 杨燕, 江永全, 欧阳小草, 范武波, 陈强, 姜涛, 李媛. 面向空气质量预测的多粒度突变拟合网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2643-2650. |
[14] | 吴筝, 程志友, 汪真天, 汪传建, 王胜, 许辉. 基于深度学习的患者麻醉复苏过程中的头部运动幅度分类方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2258-2263. |
[15] | 王东炜, 刘柏辰, 韩志, 王艳美, 唐延东. 基于低秩分解和向量量化的深度网络压缩方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 1987-1994. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||