1 |
WASSERMAN S, FAUST K. Social Network Analysis: Methods and Applications[M]. Cambridge: Cambridge University Press, 1994: 108-109. 10.1017/s0048840200023959
|
2 |
BECCHETTI L, BOLDI P, CASTILLO C, et al. Efficient algorithms for large-scale local triangle counting[J]. ACM Transactions on Knowledge Discovery from Data, 2010, 4(3): No.13. 10.1145/1839490.1839494
|
3 |
金宏桥,董一鸿,陈华辉,等.分布式环境下基于马尔科夫链的图流三角近似计算[J].电子学报, 2018, 46(9): 2139-2148. 10.3969/j.issn.0372-2112.2018.09.014
|
|
JIN H Q, DONG Y H, CHEN H H, et al. DATC-MC: Distributed approximate triangle counting based on Markov chain in graph streaming[J]. Acta Electronica Sinica, 2018, 46(9): 2139-2148. 10.3969/j.issn.0372-2112.2018.09.014
|
4 |
KUTZKOV K, PAGH R. On the streaming complexity of computing local clustering coefficients [C]// Proceedings of the 6th ACM International Conference on Web Search and Data Mining. New York: ACM, 2013: 677-686. 10.1145/2433396.2433480
|
5 |
SHIN K, LEE E, OH J, et al. CoCoS: fast and accurate distributed triangle counting in graph streams[J]. ACM Transactions on Knowledge Discovery from Data, 2021, 15(3): No.38. 10.1145/3441487
|
6 |
SHIN K, HAMMOUD M, LEE E, et al. Tri-Fly: distributed estimation of global and local triangle counts in graph streams [C]// Proceedings of the 2018 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 10939. Cham: Springer, 2018: 651-663.
|
7 |
PU Q F, ANANTHANARAYANAN G, BODIK P, et al. Low latency geo-distributed data analytics[J]. ACM SIGCOMM Computer Communication Review, 2015, 45(4): 421-434. 10.1145/2829988.2787505
|
8 |
NAWAB F, AGRAWAL D, ABBADI A EL. The challenges of global-scale data management [C]// Proceedings of the 2016 International Conference on Management of Data. New York: ACM, 2016: 2223-2227. 10.1145/2882903.2912571
|
9 |
ZHOU A C, SHEN B K, XIAO Y, et al. Cost-aware partitioning for efficient large graph processing in geo-distributed datacenters[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(7): 1707-1723. 10.1109/tpds.2019.2955494
|
10 |
SHIN K. WRS: waiting room sampling for accurate triangle counting in real graph streams [C]// Proceedings of the 2017 IEEE International Conference on Data Mining. Piscataway: IEEE, 2017: 1087-1092. 10.1109/icdm.2017.143
|
11 |
VITTER J S. Random sampling with a reservoir[J]. ACM Transactions on Mathematical Software, 1985, 11(1): 37-57. 10.1145/3147.3165
|
12 |
LIM Y, KANG U. MASCOT: memory-efficient and accurate sampling for counting local triangles in graph streams [C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2015: 685-694. 10.1145/2783258.2783285
|
13 |
TSOURAKAKIS C E, KANG U, MILLER G L, et al. DOULION: counting triangles in massive graphs with a coin [C]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 837-846. 10.1145/1557019.1557111
|
14 |
DE STEFANI L, EPASTO A, RIONDATO M, et al. TRIÈST: counting local and global triangles in fully dynamic streams with fixed memory size[J]. ACM Transactions on Knowledge Discovery from Data, 2017, 11(4): No.43. 10.1145/3059194
|
15 |
GEMULLA R, LEHNER W, HAAS P J. Maintaining bounded-size sample synopses of evolving datasets[J]. The VLDB Journal, 2008, 17(2): 173-201. 10.1007/s00778-007-0065-y
|
16 |
WANG P H, JIA P, QI Y Y, et al. REPT: a streaming algorithm of approximating global and local triangle counts in parallel [C]// Proceedings of the IEEE 35th International Conference on Data Engineering. Piscataway: IEEE, 2019: 758-769. 10.1109/icde.2019.00073
|
17 |
ZAHARIA M, CHOWDHURY M, FRANKLIN M J, et al. Spark: cluster computing with working sets [C]// Proceedings of the 2nd USENIX Workshop on Hot Topics in Cloud Computing. Berkeley: USENIX Association, 2010: 1-7.
|
18 |
GONZALEZ J E, LOW Y C, GU H J, et al. PowerGraph: distributed graph-parallel computation on natural graphs [C]// Proceedings of the 10th USENIX Symposium on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2012: 17-30.
|
19 |
ABOU-RJEILI A, KARYPIS G. Multilevel algorithms for partitioning power-law graphs [C]// Proceedings of the 20th IEEE International Parallel and Distributed Processing Symposium. Piscataway: IEEE, 2006: 1-10. 10.1109/ipdps.2006.1639360
|
20 |
AHMED N K, DUFFIELD N, WILLKE T L, et al. On sampling from massive graph streams[J]. Proceedings of the VLDB Endowment, 2017, 10(11): 1430-1441. 10.14778/3137628.3137651
|
21 |
GEHRKE J, GINSPARG P, KLEINBERG J. Overview of the 2003 KDD Cup[J]. ACM SIGKDD Explorations Newsletter, 2003, 5(2): 149-151. 10.1145/980972.980992
|
22 |
VISWANATH B, MISLOVE A, CHA M, et al. On the evolution of user interaction in Facebook [C]// Proceedings of the 2nd ACM Workshop on Online Social Networks. New York: ACM, 2009: 37-42. 10.1145/1592665.1592675
|
23 |
KLIMT B, YANG Y M. Introducing the Enron corpus[C/OL]// Proceedings of 1st Conference on Email and Anti-Spam [2022-05-23]. . 10.1007/978-3-540-30115-8_22
|
24 |
MISLOVE A E. Online social networks: measurement, analysis, and applications to distributed information systems[R]. Houston, TX: Rice University, 2009: 66-66.
|
25 |
BACKSTROM L, HUTTENLOCHER D, KLEINBERG J, et al. Group formation in large social networks: membership, growth, and evolution [C]// Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2006: 44-54. 10.1145/1150402.1150412
|