| 1 | YAN J, LIU G. Two-stage anomaly detection algorithm via dynamic community evolution in temporal graph[J]. Applied Intelligence, 2022, 52(11): 12222-12240.  10.1007/s10489-021-03109-4 | 
																													
																						| 2 | JIA X, LI X, DU N, et al. Tracking community consistency in dynamic networks: an influence-based approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(2): 782-795. | 
																													
																						| 3 | PENG H, LI J, SONG Y, et al. Streaming social event detection and evolution discovery in heterogeneous information networks[J]. ACM Transactions on Knowledge Discovery from Data, 2021, 15(5): No.89.  10.1145/3447585 | 
																													
																						| 4 | HU Y, YANG B, LV C. A local dynamic method for tracking communities and their evolution in dynamic networks[J]. Knowledge-Based Systems, 2016, 110: 176-190.  10.1016/j.knosys.2016.07.027 | 
																													
																						| 5 | SUN P G, QUAN Y N, MIAO Q G, et al. Identifying influential genes in protein-protein interaction networks[J]. Information Sciences, 2018, 454/455: 229-241.  10.1016/j.ins.2018.04.078 | 
																													
																						| 6 | FREILICH R, ARHAR T, ABRAMS J L, et al. Protein-protein interactions in the molecular chaperone network[J]. Accounts of Chemical Research, 2018, 51(4): 940-949.  10.1021/acs.accounts.8b00036 | 
																													
																						| 7 | LUO Y, MA J. The influence of positive news on rumor spreading in social networks with scale-free characteristics[J]. International Journal of Modern Physics C, 2018, 29(9): No.1850078.  10.1142/S012918311850078X | 
																													
																						| 8 | JIA J, WU W. A rumor transmission model with incubation in social networks[J]. Physica A: Statistical Mechanics and its Applications, 2018, 491: 453-462.  10.1016/j.physa.2017.09.063 | 
																													
																						| 9 | 陈小强,周丽华,程超,等. 动态网络中稳定社区发现[J]. 小型微型计算机系统, 2015, 36(9): 1977-1981.  10.3969/j.issn.1000-1220.2015.09.012 | 
																													
																						|  | CHEN X Q, ZHOU L H, CHENG C, et al. Detecting stable communities in dynamic networks[J]. Journal of Chinese Computer Systems, 2015, 36(9): 1977-1981.  10.3969/j.issn.1000-1220.2015.09.012 | 
																													
																						| 10 | DAKICHE N, TAYEBA F B S, SLIMANI Y, et al. Tracking community evolution in social networks: a survey[J]. Information Processing and Management, 2019, 56(3): 1084-1102.  10.1016/j.ipm.2018.03.005 | 
																													
																						| 11 | TAJEUNA E G, BOUGUESSA M, WANG S. Modeling and predicting community structure changes in time-evolving social networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(6): 1166-1180.  10.1109/tkde.2018.2851586 | 
																													
																						| 12 | SAGANOWSKI S, BRÓDKA P, KAZIENKO P. Influence of the dynamic social network timeframe type and size on the group evolution discovery[C]// Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. Piscataway: IEEE, 2012: 679-683.  10.1109/asonam.2012.113 | 
																													
																						| 13 | KADKHODA MOHAMMADMOSAFERI K, NADERI H. Evolution of communities in dynamic social networks: an efficient map-based approach[J]. Expert Systems with Applications, 2020, 147: No.113221.  10.1016/j.eswa.2020.113221 | 
																													
																						| 14 | PAN Y, ZHANG L. Modeling and analyzing dynamic social networks for behavioral pattern discovery in collaborative design[J]. Advanced Engineering Informatics, 2022, 54: No.101758.  10.1016/j.aei.2022.101758 | 
																													
																						| 15 | GUO C, WANG J, ZHANG Z. Evolutionary community structure discovery in dynamic weighted networks[J]. Physica A: Statistical Mechanics and its Applications, 2014, 413: 565-576.  10.1016/j.physa.2014.07.004 | 
																													
																						| 16 | LI W, ZHU H, LI S, et al. Evolutionary community discovery in dynamic social networks via resistance distance[J]. Expert Systems with Applications, 2021, 171: No.114536.  10.1016/j.eswa.2020.114536 | 
																													
																						| 17 | ORMAN G K, ÇOLAK S. Similarity based compression ratio for dynamic network modelling[C]// Proceedings of the IEEE 19th International Conference on Smart Technologies. Piscataway: IEEE, 2021: 227-232.  10.1109/eurocon52738.2021.9535635 | 
																													
																						| 18 | SULO R, BERGER-WOLF T, GROSSMAN R. Meaningful selection of temporal resolution for dynamic networks[C]// Proceedings of the 8th Workshop on Mining and Learning with Graphs. New York: ACM, 2010: 127-136.  10.1145/1830252.1830269 | 
																													
																						| 19 | ROSSETTI G, CAZABET R. Community discovery in dynamic networks: a survey[J]. ACM Computing Surveys, 2018, 51(2): No.35.  10.1145/3172867 | 
																													
																						| 20 | WANG Y, ARCHAMBAULT D, HALEEM H, et al. Nonuniform timeslicing of dynamic graphs based on visual complexity[C]// Proceedings of the 2019 IEEE Visualization Conference. Piscataway: IEEE, 2019: 1-5.  10.1109/visual.2019.8933748 | 
																													
																						| 21 | BHAT S Y, ABULAISH M. HOCTracker: tracking the evolution of hierarchical and overlapping communities in dynamic social networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(4): 1019-1031.  10.1109/tkde.2014.2349918 | 
																													
																						| 22 | WANG Z, LI Z, YUAN G, et al. Tracking the evolution of overlapping communities in dynamic social networks[J]. Knowledge-Based Systems, 2018, 157: 81-97.  10.1016/j.knosys.2018.05.026 | 
																													
																						| 23 | QIAO S, HAN N, GAO Y, et al. Dynamic community evolution analysis framework for large-scale complex networks based on strong and weak events[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(10): 6229-6243.  10.1109/tsmc.2019.2960085 | 
																													
																						| 24 | XU Z, RUI X, HE J, et al. Superspreaders and superblockers based community evolution tracking in dynamic social networks[J]. Knowledge-Based Systems, 2020, 192: No.105377.  10.1016/j.knosys.2019.105377 | 
																													
																						| 25 | ÇOLAK S, ORMAN G K. Aggregating time windows for dynamic network extraction[C]// Proceedings of the 2021 International Conference on Innovations in Intelligent Systems and Applications. Piscataway: IEEE, 2021: 1-6.  10.1109/inista52262.2021.9548480 | 
																													
																						| 26 | ORMAN G K, TÜRE N, BALCISOY S, et al. Finding proper time intervals for dynamic network extraction[J]. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021(3): No.033414.  10.1088/1742-5468/abed45 | 
																													
																						| 27 | GIRVAN M, NEWMAN M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 7821-7826.  10.1073/pnas.122653799 | 
																													
																						| 28 | BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10): No.P10008.  10.1088/1742-5468/2008/10/p10008 | 
																													
																						| 29 | RAGHAVAN U N, ALBERT R, KUMARA S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2007, 76(3): No.036106.  10.1103/physreve.76.036106 | 
																													
																						| 30 | BRÓDKA P, SAGANOWSKI S, KAZIENKO P. Tracking group evolution in social networks[C]// Proceedings of the 2011 International Conference on Social Informatics, LNCS 6984. Berlin: Springer, 2011: 316-319. | 
																													
																						| 31 | WHEELWRIGHT S, MAKRIDAKIS S, HYNDMAN R J, Forecasting : Methods and Applications[M]. Hoboken, NJ: John Wiley & Sons, 2008: 335-346. | 
																													
																						| 32 | NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 69(2): No.026113.  10.1103/physreve.69.026113 | 
																													
																						| 33 | LESKOVEC J, KREVL A. High-energy physics citation network[DS/OL]. [2021-12-15].. | 
																													
																						| 34 | LESKOVEC J, KREVL A. Math overflow temporal network[DS/OL]. [2021-12-15].. | 
																													
																						| 35 | ZHUANG D, CHANG J M, LI M. DynaMo: dynamic community detection by incrementally maximizing modularity[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(5): 1934-1945. |