《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (1): 48-58.DOI: 10.11772/j.issn.1001-9081.2024010010
邢长征1, 梁浚锋1(), 金海波1, 徐佳玉1, 乌海荣2
收稿日期:
2024-01-11
修回日期:
2024-03-26
接受日期:
2024-03-26
发布日期:
2024-05-09
出版日期:
2025-01-10
通讯作者:
梁浚锋
作者简介:
邢长征(1967—),男,辽宁阜新人,教授,博士,CCF高级会员,主要研究方向:人工智能、数据挖掘;基金资助:
Changzheng XING1, Junfeng LIANG1(), Haibo JIN1, Jiayu XU1, Hairong WU2
Received:
2024-01-11
Revised:
2024-03-26
Accepted:
2024-03-26
Online:
2024-05-09
Published:
2025-01-10
Contact:
Junfeng LIANG
About author:
XING Changzheng, born in 1967, Ph. D., professor. His research interests include artificial intelligence, data mining.Supported by:
摘要:
针对现有的试卷生成技术存在过多关注生成试卷的难易程度,而忽略了其他相关目标,例如质量、分数分布和技能覆盖范围的问题,提出一种强化学习和矩阵补全引导的多目标试卷生成方法,以优化试卷生成领域的特定目标。首先,运用深度知识追踪方法对学生之间的交互信息和响应日志进行建模以获取学生群体的技能熟练程度;其次,运用矩阵分解和矩阵补全方法对学生未做的习题进行得分预测;最后,基于多目标试卷生成策略,为提升Q网络的更新效率,设计一个Exam Q-Network函数逼近器以自动地选择合适的问题集来更新试卷组成。实验结果表明,相较于DEGA (Diseased-Enhanced Genetic Algorithm)、SSA-GA (Sparrow Search Algorithm - Genetic Algorithm)等模型,在试卷难度、合理性、准确性这3个指标上验证了所提模型在解决试卷生成场景的多重困境方面上效果显著。
中图分类号:
邢长征, 梁浚锋, 金海波, 徐佳玉, 乌海荣. 强化学习和矩阵补全引导的多目标试卷生成[J]. 计算机应用, 2025, 45(1): 48-58.
Changzheng XING, Junfeng LIANG, Haibo JIN, Jiayu XU, Hairong WU. Multi-objective exam paper generation guided by reinforcement learning and matrix completion[J]. Journal of Computer Applications, 2025, 45(1): 48-58.
数据集 | 题目数 | 学生数 | 问题数 | 答题次数 |
---|---|---|---|---|
ASSISTments0910 | 110 | 4 151 | 16 891 | 325 637 |
Statics2011 | 1 223 | 333 | 300 | 189 287 |
表1 数据集信息
Tab. 1 Dataset information
数据集 | 题目数 | 学生数 | 问题数 | 答题次数 |
---|---|---|---|---|
ASSISTments0910 | 110 | 4 151 | 16 891 | 325 637 |
Statics2011 | 1 223 | 333 | 300 | 189 287 |
模型 | 难度 | 合理性 | 准确性 | 均值 |
---|---|---|---|---|
P-value | 9.722 5E-7 | 3.204 9E-14 | 0.011 5 | 1.629 5E-17 |
RSF | 0.882 6±0.014 2 | 0.895 9±0.011 6 | 0.861 9±0.017 0 | 0.880 1±0.014 3 |
MOCPSO | 0.897 2±0.009 0 | 0.912 2±0.011 6 | 0.872 4±0.012 5 | 0.893 9±0.011 0 |
PGA-EG | 0.919 9±0.007 2 | 0.925 7±0.007 4 | 0.903 0±0.009 0 | 0.916 2±0.007 9 |
MMGA | 0.916 9±0.008 6 | 0.920 5±0.008 5 | 0.898 3±0.010 4 | 0.911 9±0.009 2 |
DEGA | 0.920 4±0.006 1 | 0.921 4±0.006 3 | 0.903 5±0.008 2 | 0.918 9±0.007 3 |
SSA-GA | 0.923 5±0.004 6 | 0.934 1±0.038 0 | 0.910 7±0.009 5 | 0.920 3±0.006 7 |
MOEPG-r1 | 0.959 3±0.005 1 | 0.961 1±0.006 2 | 0.489 8±0.009 1 | 0.838 0±0.006 8 |
MOEPG-r2 | 0.931 9±0.003 8 | 0.973 3±0.003 9 | 0.421 9±0.011 2 | 0.782 0±0.006 3 |
MOEPG-r3 | 0.788 6±0.008 1 | 0.810 3±0.009 3 | 0.988 4±0.005 3 | 0.859 4±0.007 6 |
MOEPG | 0.931 9±0.004 2 | 0.955 8±0.004 1 | 0.921 8±0.006 7 | 0.932 2±0.005 0 |
表2 ASSISTments0910数据集上的模型性能
Tab. 2 Model performance on ASSISTments0910 dataset
模型 | 难度 | 合理性 | 准确性 | 均值 |
---|---|---|---|---|
P-value | 9.722 5E-7 | 3.204 9E-14 | 0.011 5 | 1.629 5E-17 |
RSF | 0.882 6±0.014 2 | 0.895 9±0.011 6 | 0.861 9±0.017 0 | 0.880 1±0.014 3 |
MOCPSO | 0.897 2±0.009 0 | 0.912 2±0.011 6 | 0.872 4±0.012 5 | 0.893 9±0.011 0 |
PGA-EG | 0.919 9±0.007 2 | 0.925 7±0.007 4 | 0.903 0±0.009 0 | 0.916 2±0.007 9 |
MMGA | 0.916 9±0.008 6 | 0.920 5±0.008 5 | 0.898 3±0.010 4 | 0.911 9±0.009 2 |
DEGA | 0.920 4±0.006 1 | 0.921 4±0.006 3 | 0.903 5±0.008 2 | 0.918 9±0.007 3 |
SSA-GA | 0.923 5±0.004 6 | 0.934 1±0.038 0 | 0.910 7±0.009 5 | 0.920 3±0.006 7 |
MOEPG-r1 | 0.959 3±0.005 1 | 0.961 1±0.006 2 | 0.489 8±0.009 1 | 0.838 0±0.006 8 |
MOEPG-r2 | 0.931 9±0.003 8 | 0.973 3±0.003 9 | 0.421 9±0.011 2 | 0.782 0±0.006 3 |
MOEPG-r3 | 0.788 6±0.008 1 | 0.810 3±0.009 3 | 0.988 4±0.005 3 | 0.859 4±0.007 6 |
MOEPG | 0.931 9±0.004 2 | 0.955 8±0.004 1 | 0.921 8±0.006 7 | 0.932 2±0.005 0 |
模型 | 难度 | 合理性 | 准确性 | 均值 |
---|---|---|---|---|
P-value | 7.354 1E-12 | 1.167 4E-11 | 6.885 4E-9 | 5.556 3E-21 |
RSF | 0.938 9±0.025 1 | 0.836 4±0.001 8 | 0.682 9±0.013 8 | 0.819 4±0.013 6 |
MOCPSO | 0.954 3±0.013 4 | 0.857 5±0.001 0 | 0.694 0±0.011 7 | 0.835 3±0.008 7 |
PGA-EG | 0.971 2±0.006 7 | 0.895 3±0.000 8 | 0.719 9±0.007 0 | 0.862 1±0.004 8 |
MMGA | 0.967 6±0.010 5 | 0.884 9±0.001 6 | 0.705 1±0.009 6 | 0.852 5±0.007 2 |
DEGA | 0.972 2±0.005 7 | 0.892 4±0.001 1 | 0.718 2±0.007 0 | 0.861 1±0.004 2 |
SSA-GA | 0.977 4±0.004 9 | 0.902 5±0.000 9 | 0.774 9±0.007 7 | 0.863 1±0.004 3 |
MOEPG-r1 | 0.990 5±0.002 7 | 0.906 5±0.003 1 | 0.327 8±0.013 9 | 0.745 5±0.006 8 |
MOEPG-r2 | 0.985 2±0.004 3 | 0.923 4±0.001 0 | 0.276 1±0.012 5 | 0.729 2±0.006 1 |
MOEPG-r3 | 0.479 0±0.005 1 | 0.418 9±0.002 5 | 0.889 5±0.004 6 | 0.598 3±0.004 2 |
MOEPG | 0.988 9±0.004 9 | 0.909 9±0.000 7 | 0.734 9±0.005 4 | 0.887 6±0.003 7 |
表3 Statics2 011数据集上的模型性能
Tab. 3 Model performance on Statics2 011 dataset
模型 | 难度 | 合理性 | 准确性 | 均值 |
---|---|---|---|---|
P-value | 7.354 1E-12 | 1.167 4E-11 | 6.885 4E-9 | 5.556 3E-21 |
RSF | 0.938 9±0.025 1 | 0.836 4±0.001 8 | 0.682 9±0.013 8 | 0.819 4±0.013 6 |
MOCPSO | 0.954 3±0.013 4 | 0.857 5±0.001 0 | 0.694 0±0.011 7 | 0.835 3±0.008 7 |
PGA-EG | 0.971 2±0.006 7 | 0.895 3±0.000 8 | 0.719 9±0.007 0 | 0.862 1±0.004 8 |
MMGA | 0.967 6±0.010 5 | 0.884 9±0.001 6 | 0.705 1±0.009 6 | 0.852 5±0.007 2 |
DEGA | 0.972 2±0.005 7 | 0.892 4±0.001 1 | 0.718 2±0.007 0 | 0.861 1±0.004 2 |
SSA-GA | 0.977 4±0.004 9 | 0.902 5±0.000 9 | 0.774 9±0.007 7 | 0.863 1±0.004 3 |
MOEPG-r1 | 0.990 5±0.002 7 | 0.906 5±0.003 1 | 0.327 8±0.013 9 | 0.745 5±0.006 8 |
MOEPG-r2 | 0.985 2±0.004 3 | 0.923 4±0.001 0 | 0.276 1±0.012 5 | 0.729 2±0.006 1 |
MOEPG-r3 | 0.479 0±0.005 1 | 0.418 9±0.002 5 | 0.889 5±0.004 6 | 0.598 3±0.004 2 |
MOEPG | 0.988 9±0.004 9 | 0.909 9±0.000 7 | 0.734 9±0.005 4 | 0.887 6±0.003 7 |
1 | CUI J, ZHOU Y, HUANG G. A test paper generation algorithm based on diseased enhanced genetic algorithm [J]. Heliyon, 2023, 9(6): No.e17187. |
2 | 王凤蕊,王文宏,董金新.基于自适应果蝇优化算法的平行试卷自动生成[J].计算工程与设计, 2015, 36(10): 2807-2812. |
WANG F R, WANG W H, DONG J X. Fruit fly optimization algorithm with adaptive mutation for intelligent parallel test-sheets composition problem [J]. Computer Engineering and Design, 2015, 36(10): 2807-2812. | |
3 | 秦川,祝恒书,庄福振,等.基于知识图谱的推荐系统研究综述[J].中国科学:信息科学, 2020, 50(7): 937-956. |
QIN C, ZHU H S, ZHUANG F Z, et al. A survey on knowledge graph-based recommender systems [J]. SCIENTIA SINICA Informationis, 2020, 50(7): 937-956. | |
4 | THOMPSON Z, DOWNEY A R J, BAKOS J D, et al. Multi-modal generative adversarial networks for synthesizing time-series structural impact responses [J]. Mechanical Systems and Signal Processing, 2023, 204: No.110725. |
5 | SHAO J, YANG R. Controllable image caption based on adaptive weight and optimization strategy [J]. Pattern Recognition and Image Analysis, 2023, 33(1): 1-10. |
6 | SUN X, ZHAO X, LI B, et al. Dynamic key-value memory networks with rich features for knowledge tracing [J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8239-8245. |
7 | LIU Y, YANG Y, CHEN X, et al. Improving knowledge tracing via pre-training question embeddings [C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2020: 1577-1583. |
8 | PANDEY S, KARYPIS G. A self-attentive model for knowledge tracing [EB/OL]. [2023-03-27]. . |
9 | GHOSH A, HEFFERNAN N, LAN A S. Context-aware attentive knowledge tracing [C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 2330-2339. |
10 | YANG Z P, ZHAO Y. Hybrid SGD algorithms to solve stochastic composite optimization problems with application in sparse portfolio selection problems [J]. Journal of Computational and Applied Mathematics, 2024, 436: No.115424. |
11 | NAHAR M, KAMAL A H M, HOSSAIN G. Protecting health data in the cloud through steganography: a table-driven, blind method using neural networks and bit-shuffling algorithm [J]. Journal of Network and Computer Applications, 2023, 217: No.103689. |
12 | YANG J H, LIU W Y, AN Y H, et al. Enhanced adaptive sequential Monte Carlo method for Bayesian model class selection by quantifying data fit and information gain [J]. Mechanical Systems and Signal Processing, 2024, 206: No.110792. |
13 | ABDELFATAH R I. A color image authenticated encryption using conic curve and Mersenne twister [J]. Multimedia Tools and Applications, 2020, 79(33/34): 24731-24756. |
14 | REN M, XU R, ZHU T. Double deep Q-network decoder based on EEG brain-computer interface [J]. ZTE Communications, 2023, 21(3): 3-10. |
15 | PATEL H R, SHAH V A. Type-2 fuzzy logic applications designed for active parameter adaptation in metaheuristic algorithm for fuzzy fault-tolerant controller [J]. International Journal of Intelligent Computing and Cybernetics, 2023, 16(2): 198-222. |
16 | CHEN Y. Study on non-iterative algorithms for center-of-sets type-reduction of Takagi-Sugeno-Kang type general type-2 fuzzy logic systems [J]. Complex and Intelligent Systems, 2022, 9: 4015-4023. |
17 | JOODAKI M, DOWLATSHAHI M B, JOODAKI N Z. An ensemble feature selection algorithm based on PageRank centrality and fuzzy logic [J]. Knowledge-Based Systems, 2021, 233: No.107538. |
18 | SALTO C, MINETTI G, ALBA E, et al. Big optimization with genetic algorithms: Hadoop, Spark, and MPI [J]. Soft Computing, 2023, 27(16): 11469-11484. |
19 | GAO M, YANG X. APSO-SL: an adaptive particle swarm optimization with state-based learning strategy [J]. Processes, 2024, 12(2): No.400. |
20 | YAN L. Design of 3D animation color rendering system supported by cloud computing based on genetic algorithm [J]. Soft Computing, 2024,28():77-77. |
21 | YU Z, KESKINOCAK P, ORENSTEIN W A, et al. A mixed integer programming model for vaccine pricing within a group purchasing organization [J]. Vaccine, 2024, 42(8): 1892-1898. |
22 | LI G, WEI Y, CHEN Y, et al. Softmax policy gradient methods can take exponential time to converge [J]. Mathematical Programming, 2023, 201(1/2): 707-802. |
23 | ECCLES B J, RODGERS P, KILPATRICK P, et al. DNNShifter: an efficient DNN pruning system for edge computing [J]. Future Generation Computer Systems, 2024, 152: 43-54. |
24 | MA Y, SHEN Y, GUAN H, et al. A novel approach to detect the spring corn phenology using layered strategy [J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 122: No.103422. |
25 | REN H, REN H, SUN Z. HSFA: a novel firefly algorithm based on a hierarchical strategy [J]. Knowledge-Based Systems, 2023, 279: No.110950. |
26 | ZHAO J, SHAO M, TANG H, et al. RHGNN: fake reviewer detection based on reinforced heterogeneous graph neural networks [J]. Knowledge-Based Systems, 2023, 280: No.111029. |
27 | DENG C, ZHANG Q, ZHANG H, et al. Research on rapid congestion identification method based on TSNE-FCM and LightGBM [J]. Sustainability, 2023, 15(14): No.11322. |
28 | BELTRAN-ROYO C, LLOPIS-IBOR L, PANTRIGO J J, et al. DC Neural Networks avoid over fitting in one-dimensional nonlinear regression [J]. Knowledge-Based Systems, 2024, 283: No.111154. |
29 | 郑道博,宁慧,张汝波.基于遗传算法的自动组卷系统的策略优化设计及实现[J].应用科技, 2023, 50(3): 17-21. |
ZHENG D B, NING H, ZHANG R B. Strategy optimization design and implementation of automatic test paper generation system based on genetic algorithm [J]. Applied Science and Technology, 2023, 50(3): 17-21. | |
30 | RAHUL, CHOUDHARY B. An advanced genetic algorithm with improved support vector machine for multi-class classification of real power quality events [J]. Electric Power Systems Research, 2021, 191: No.106879. |
31 | LIANG Y, BO K, MEYYAPPAN S, et al. Decoding fMRI data with support vector machines and deep neural networks [J]. Journal of Neuroscience Methods, 2024, 401: No.110004. |
32 | 张锟滨,陈玉明,吴克寿,等.粒向量驱动的随机森林分类算法研究[J].计算机工程与应用, 2024, 60(3): 148-156. |
ZHANG K B, CHEN Y M, WU K S, et al. Research on granule vectors random forest classification algorithm [J]. Computer Engineering and Applications, 2024, 60(3): 148-156. | |
33 | 夏文博,范威,高莉.基于卷积神经网络的水下多目标方位估计方法[J].声学技术, 2023, 42(3): 290-296. |
XIA W B, FAN W, GAO L. Underwater multi-target azimuth estimation method based on convolutional neural network [J]. Technical Acoustics, 2023, 42(3): 290-296. | |
34 | SONKAR S, WATERS A E, LAN A S, et al. qDKT: question-centric deep knowledge tracing [EB/OL]. [2023-03-27]. . |
35 | LIU D, ZHANG Y, ZHANG J, et al. Multiple features fusion attention mechanism enhanced deep knowledge tracing for student performance prediction [J]. IEEE Access, 2020, 8: 194894-194903. |
36 | HAN Y, LIU Z, LYU Y, et al. Deep learning-based visual ensemble method for high-speed railway catenary clevis fracture detection [J]. Neurocomputing, 2020, 396: 556-568. |
37 | ABIDI S M R, HUSSAIN M, XU Y, et al. Prediction of confusion attempting algebra homework in an intelligent tutoring system through machine learning techniques for educational sustainable development [J]. Sustainability, 2019, 11(1): No.105. |
38 | CHENG X. A multi-objective optimization approach for question routing in community question answering services [J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(9): 1779-1792. |
39 | NGUYEN M L, HUI S C, FONG A C M. Large-scale multiobjective static test generation for web-based testing with integer programing [J]. IEEE Transactions on Learning Technologies, 2013, 6(1): 46-59. |
40 | HAN L M, GAO H, ZHAI R J. Modelling and Simulation of Intelligent English Paper Generating Based on SSA‐GA[J]. Mathematical Problems in Engineering, 2023, 2023(1):2277185. |
[1] | 徐则林, 杨敏, 陈勐. 融合空间和文本信息的兴趣点类别表征模型[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2456-2461. |
[2] | 王昱, 任田君, 范子琳. 基于引导Minimax-DDQN的无人机空战机动决策[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2636-2643. |
[3] | 周寅莹, 周允升, 余敦辉, 孙军. 基于消极相似性的自适应社会化推荐[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2439-2447. |
[4] | 张奕, 王真梅. 图自动编码器上二阶段融合实现的环状RNA-疾病关联预测[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1979-1986. |
[5] | 谭钰, 王小琴, 蓝如师, 刘振丙, 罗笑南. 基于判别性矩阵分解的多标签跨模态哈希检索[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1349-1354. |
[6] | 李振亮, 李波. 基于矩阵分解的卷积神经网络改进方法[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 685-691. |
[7] | 任奇泽, 贾洪杰, 陈东宇. 融合局部结构学习的大规模子空间聚类算法[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3747-3754. |
[8] | 包永春, 张建臣, 杜守信, 张军军. 基于非负矩阵分解与稀疏表示的多标签分类算法[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1375-1382. |
[9] | 周寅莹, 章梦怡, 余敦辉, 朱明. 融合信任隐含相似度与评分相似度的社会化推荐[J]. 《计算机应用》唯一官方网站, 2022, 42(12): 3671-3678. |
[10] | 王锦凯, 贾旭. 基于迁移孪生非负矩阵分解的静脉识别算法[J]. 计算机应用, 2021, 41(3): 898-903. |
[11] | 陈献, 胡丽莹, 林晓炜, 陈黎飞. 基于核非负矩阵分解的有向图聚类算法[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3447-3454. |
[12] | 杜汉, 龙显忠, 李云. 基于图学习正则判别非负矩阵分解的人脸识别[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3455-3461. |
[13] | 李华, 卢桂馥, 余沁茹. 基于干净数据的流形正则化非负矩阵分解[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3492-3498. |
[14] | 骆锦潍, 刘杜钢, 潘微科, 明仲. 基于改进的倾向得分估计的无偏推荐模型[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3508-3514. |
[15] | 温雯, 刘芳, 蔡瑞初, 郝志峰. 面向群组用户时序行为的动态推荐算法[J]. 计算机应用, 2021, 41(1): 60-66. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||