《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (1): 59-68.DOI: 10.11772/j.issn.1001-9081.2024010043
徐欣然1,2, 张绍兵1,2,3(), 成苗1,2,3, 张洋1,2,3, 曾尚1,2
收稿日期:
2024-01-17
修回日期:
2024-03-21
接受日期:
2024-03-21
发布日期:
2024-05-09
出版日期:
2025-01-10
通讯作者:
张绍兵
作者简介:
徐欣然(1997—),男,四川成都人,硕士研究生,主要研究方向:人工智能、预测性维护、工业大数据;基金资助:
Xinran XU1,2, Shaobing ZHANG1,2,3(), Miao CHENG1,2,3, Yang ZHANG1,2,3, Shang ZENG1,2
Received:
2024-01-17
Revised:
2024-03-21
Accepted:
2024-03-21
Online:
2024-05-09
Published:
2025-01-10
Contact:
Shaobing ZHANG
About author:
XU Xinran, born in 1997, M. S. candidate. His research interests include artificial intelligence, predictive maintenance, industrial big data.Supported by:
摘要:
针对滚动轴承故障诊断中处理复杂工况准确率较低的问题,提出一个多任务学习(MTL)模型,即多路层次化混合专家(MHMoE)模型,以及对应的层次化训练模式。该模型结合多阶段、多任务联合训练,实现了层次化的信息共享模式,并在普通MTL模式的基础上进一步提升了模型的泛化性和故障识别准确率,使模型能同时在复杂与简单的数据集上出色地完成任务,同时,结合一维ResNet的瓶颈层结构,在保证网络深度的同时,也规避梯度爆炸与梯度消失等问题,从而能充分地提取数据集的相关特征。以帕德博恩大学轴承故障数据集(PU)为测试数据集设计的实验的结果表明,在不同工况复杂度下,与不使用MTL的单任务混合专家单元结构(OMoE)-ResNet18模型相比,所提模型的准确率提升5.45~9.30个百分点;而与集成经验模态分解的Hilbert谱变换方法(EEMD-Hilbert)、MMoE (Multi-gate Mixture-of-Experts)和多尺度多任务注意力卷积神经网络(MSTACNN)等模型相比,所提模型的准确率至少提升3.21~16.45个百分点。
中图分类号:
徐欣然, 张绍兵, 成苗, 张洋, 曾尚. 基于多路层次化混合专家模型的轴承故障诊断方法[J]. 计算机应用, 2025, 45(1): 59-68.
Xinran XU, Shaobing ZHANG, Miao CHENG, Yang ZHANG, Shang ZENG. Bearings fault diagnosis method based on multi-pathed hierarchical mixture-of-experts model[J]. Journal of Computer Applications, 2025, 45(1): 59-68.
编号 | 名称 | 类别编号 | 标签名称 |
---|---|---|---|
0 | 工况 | 0 | N15_M01_F10 |
1 | N09_M07_F10 | ||
2 | N15_M07_F10 | ||
3 | N15_M07_F04 | ||
1 | 故障外因 | 0 | No fault |
1 | drilling | ||
2 | EDM(Electrical Discharge Machining) | ||
3 | electric engraver | ||
4 | fatigue: pitting | ||
5 | plastic deforms | ||
2 | 复合故障 | 0 | No fault |
1 | Artificial damage | ||
2 | Single damage | ||
3 | Repetitive damage | ||
4 | Multiple damage | ||
3 | 故障等级 | 0 | No fault |
1 | 0-2 mm fault | ||
2 | 2-4.5 mm fault | ||
3 | 4.5-13.5 mm fault | ||
4 | 内圈故障 | 0 | No fault |
1 | With fault | ||
5 | 外圈故障 | 0 | No fault |
1 | With fault |
表1 PU标签设置
Tab. 1 Label setting of PU
编号 | 名称 | 类别编号 | 标签名称 |
---|---|---|---|
0 | 工况 | 0 | N15_M01_F10 |
1 | N09_M07_F10 | ||
2 | N15_M07_F10 | ||
3 | N15_M07_F04 | ||
1 | 故障外因 | 0 | No fault |
1 | drilling | ||
2 | EDM(Electrical Discharge Machining) | ||
3 | electric engraver | ||
4 | fatigue: pitting | ||
5 | plastic deforms | ||
2 | 复合故障 | 0 | No fault |
1 | Artificial damage | ||
2 | Single damage | ||
3 | Repetitive damage | ||
4 | Multiple damage | ||
3 | 故障等级 | 0 | No fault |
1 | 0-2 mm fault | ||
2 | 2-4.5 mm fault | ||
3 | 4.5-13.5 mm fault | ||
4 | 内圈故障 | 0 | No fault |
1 | With fault | ||
5 | 外圈故障 | 0 | No fault |
1 | With fault |
工况名称 | 负载扭矩/(N·m) | 轴转速/(r·min-1) | 径向力/N |
---|---|---|---|
N15_M01_F10 | 0.1 | 1 500 | 1 000 |
N09_M07_F10 | 0.7 | 900 | 1 000 |
N15_M07_F10 | 0.7 | 1 500 | 1 000 |
N15_M07_F04 | 0.7 | 1 500 | 400 |
表2 PU工况参数
Tab. 2 Working condition parameters of PU
工况名称 | 负载扭矩/(N·m) | 轴转速/(r·min-1) | 径向力/N |
---|---|---|---|
N15_M01_F10 | 0.1 | 1 500 | 1 000 |
N09_M07_F10 | 0.7 | 900 | 1 000 |
N15_M07_F10 | 0.7 | 1 500 | 1 000 |
N15_M07_F04 | 0.7 | 1 500 | 400 |
组别 | 数据文件 | 轴承工况 | 说明 |
---|---|---|---|
组1 | K001,KA04,KA15,KA16,KA22,KA30,KB23,KB24,KB27,KI14,KI16,KI17,KI18,KI21 | N15_M01_F10 | 自然损毁的单一工况轴承 |
组2 | K001,KA04,KA15,KA16,KA22,KA30,KB23,KB24,KB27,KI14,KI16,KI17,KI18,KI21 | 所有工况 | 自然损毁的多种工况轴承 |
组3 | 所有文件 | 所有工况 | 全数据集 |
表3 PU分组方式
Tab. 3 Grouping method of PU
组别 | 数据文件 | 轴承工况 | 说明 |
---|---|---|---|
组1 | K001,KA04,KA15,KA16,KA22,KA30,KB23,KB24,KB27,KI14,KI16,KI17,KI18,KI21 | N15_M01_F10 | 自然损毁的单一工况轴承 |
组2 | K001,KA04,KA15,KA16,KA22,KA30,KB23,KB24,KB27,KI14,KI16,KI17,KI18,KI21 | 所有工况 | 自然损毁的多种工况轴承 |
组3 | 所有文件 | 所有工况 | 全数据集 |
参数 | 默认值 |
---|---|
DWA温度 | 10 |
单条数据长度 | 1 024 |
批大小 | 64 |
EU输出维度 | 64 |
单个EU的ResNet18单元数 | 3 |
数据读取总条数 | 200 000 |
学习率衰减步长 | 20 |
学习率衰减率 | 0.3 |
表4 实验参数设置
Tab. 4 Parameter setting of experiments
参数 | 默认值 |
---|---|
DWA温度 | 10 |
单条数据长度 | 1 024 |
批大小 | 64 |
EU输出维度 | 64 |
单个EU的ResNet18单元数 | 3 |
数据读取总条数 | 200 000 |
学习率衰减步长 | 20 |
学习率衰减率 | 0.3 |
名称 | 配置信息 |
---|---|
CPU | AMD Ryzen 7 5800X |
GPU | GeForce RTX3090(24 GB) |
操作系统 | Ubuntu 18.04.6 |
编程语言 | Python 3.8.0 |
框架 | torch 1.13.1+cu117 |
表5 实验环境
Tab. 5 Environment of experiments
名称 | 配置信息 |
---|---|
CPU | AMD Ryzen 7 5800X |
GPU | GeForce RTX3090(24 GB) |
操作系统 | Ubuntu 18.04.6 |
编程语言 | Python 3.8.0 |
框架 | torch 1.13.1+cu117 |
模型 | 分类准确率 | ||
---|---|---|---|
组1 | 组2 | 组3 | |
WDCNN | 86.47 | 69.43 | 46.93 |
EEMD-Hilbert+FWA-SVM | 91.42 | 79.25 | 51.75 |
ResNet18 | 93.21 | 74.74 | 49.59 |
MMoE+ResNet18 | 93.73 | 75.24 | 51.78 |
MSTACNN | 94.03 | 75.40 | 52.27 |
MHMoE(本文模型) | 97.24 | 89.13 | 68.72 |
表6 MHMoE与其他模型的准确率对比 (%)
Tab. 6 Accuracy comparison between MHMoE and other models
模型 | 分类准确率 | ||
---|---|---|---|
组1 | 组2 | 组3 | |
WDCNN | 86.47 | 69.43 | 46.93 |
EEMD-Hilbert+FWA-SVM | 91.42 | 79.25 | 51.75 |
ResNet18 | 93.21 | 74.74 | 49.59 |
MMoE+ResNet18 | 93.73 | 75.24 | 51.78 |
MSTACNN | 94.03 | 75.40 | 52.27 |
MHMoE(本文模型) | 97.24 | 89.13 | 68.72 |
组别 | 任务 | 准确率 | |
---|---|---|---|
MHMoE | OMoE+ResNet18 | ||
组1 | 故障等级 | 99.69 | 95.21 |
内圈故障 | 98.72 | 92.42 | |
外圈故障 | 98.61 | 93.03 | |
组2 | 故障等级 | 96.45 | 92.27 |
内圈故障 | 96.77 | 90.03 | |
外圈故障 | 94.92 | 88.60 | |
组3 | 故障等级 | 84.37 | 77.02 |
内圈故障 | 87.65 | 78.31 | |
外圈故障 | 89.33 | 78.11 |
表7 MHMoE与OMoE+ResNet18的准确率对比 (%)
Tab. 7 Accuracy comparison between MHMoE and OMoE+ResNet18
组别 | 任务 | 准确率 | |
---|---|---|---|
MHMoE | OMoE+ResNet18 | ||
组1 | 故障等级 | 99.69 | 95.21 |
内圈故障 | 98.72 | 92.42 | |
外圈故障 | 98.61 | 93.03 | |
组2 | 故障等级 | 96.45 | 92.27 |
内圈故障 | 96.77 | 90.03 | |
外圈故障 | 94.92 | 88.60 | |
组3 | 故障等级 | 84.37 | 77.02 |
内圈故障 | 87.65 | 78.31 | |
外圈故障 | 89.33 | 78.11 |
组别 | 任务 | 准确率 | |
---|---|---|---|
CEU+EEU | CEU | ||
组1 | 故障等级 | 99.69 | 99.01 |
内圈故障 | 98.72 | 97.47 | |
外圈故障 | 98.61 | 97.12 | |
组2 | 故障等级 | 97.39 | 93.95 |
内圈故障 | 96.77 | 92.58 | |
外圈故障 | 95.33 | 93.32 | |
组3 | 故障等级 | 84.37 | 82.31 |
内圈故障 | 87.65 | 81.23 | |
外圈故障 | 89.33 | 82.01 |
表8 只含CEU的模型与使用CEU+EEU的模型的准确率对比 (%)
Tab. 8 Accuracy comparison between model only using CEU and model using CEU+EEU
组别 | 任务 | 准确率 | |
---|---|---|---|
CEU+EEU | CEU | ||
组1 | 故障等级 | 99.69 | 99.01 |
内圈故障 | 98.72 | 97.47 | |
外圈故障 | 98.61 | 97.12 | |
组2 | 故障等级 | 97.39 | 93.95 |
内圈故障 | 96.77 | 92.58 | |
外圈故障 | 95.33 | 93.32 | |
组3 | 故障等级 | 84.37 | 82.31 |
内圈故障 | 87.65 | 81.23 | |
外圈故障 | 89.33 | 82.01 |
组别 | 任务类别 | 准确率 | |||
---|---|---|---|---|---|
O+M+U | U | O+U | M+U | ||
组1 | 故障等级 | 99.69 | 97.17 | 99.23 | 99.17 |
内圈故障 | 98.72 | 97.63 | 97.03 | 97.85 | |
外圈故障 | 98.61 | 96.34 | 98.06 | 97.14 | |
组2 | 故障等级 | 97.39 | 93.42 | 94.03 | 93.39 |
内圈故障 | 96.77 | 91.03 | 93.32 | 94.56 | |
外圈故障 | 95.33 | 92.86 | 92.77 | 91.13 | |
组3 | 故障等级 | 84.37 | 80.34 | 82.06 | 82.12 |
内圈故障 | 87.65 | 82.21 | 82.33 | 83.57 | |
外圈故障 | 89.33 | 82.13 | 83.65 | 83.76 |
表9 有关层次化训练各阶段的消融实验 (%)
Tab. 9 Ablation experiments of hierarchical training stages
组别 | 任务类别 | 准确率 | |||
---|---|---|---|---|---|
O+M+U | U | O+U | M+U | ||
组1 | 故障等级 | 99.69 | 97.17 | 99.23 | 99.17 |
内圈故障 | 98.72 | 97.63 | 97.03 | 97.85 | |
外圈故障 | 98.61 | 96.34 | 98.06 | 97.14 | |
组2 | 故障等级 | 97.39 | 93.42 | 94.03 | 93.39 |
内圈故障 | 96.77 | 91.03 | 93.32 | 94.56 | |
外圈故障 | 95.33 | 92.86 | 92.77 | 91.13 | |
组3 | 故障等级 | 84.37 | 80.34 | 82.06 | 82.12 |
内圈故障 | 87.65 | 82.21 | 82.33 | 83.57 | |
外圈故障 | 89.33 | 82.13 | 83.65 | 83.76 |
1 | GAI J, SHEN J, HU Y, et al. An integrated method based on hybrid grey wolf optimizer improved variational mode decomposition and deep neural network for fault diagnosis of rolling bearing [J]. Measurement, 2020, 162: No.107901. |
2 | 李心一,谢志江,罗久飞.加窗插值快速傅里叶变换在滚动轴承故障诊断中的应用[J].中国机械工程, 2018, 29(10): 1166-1172. |
LI X Y, XIE Z J, LUO J F. Applications of windowed interpolation FFT algorithm in rolling bearing fault diagnosis [J]. China Mechanical Engineering, 2018, 29(10): 1166-1172. | |
3 | 向丹,岑健.基于EMD熵特征融合的滚动轴承故障诊断方法[J].航空动力学报, 2015, 30(5): 1149-1155. |
XIANG D, CEN J. Method of roller bearing fault diagnosis based on feature fusion of EMD entropy [J]. Journal of Aerospace Power, 2015, 30(5): 1149-1155. | |
4 | 詹君,程龙生,彭宅铭.基于VMD和改进多分类马田系统的滚动轴承故障智能诊断[J].振动与冲击, 2020, 39(2): 32-39. |
ZHAN J, CHENG L S, PENG Z M. Intelligent fault diagnosis of rolling bearings based on the VMD and improved multi-classification Mahalanobis Taguchi system [J]. Journal of Vibration and Shock, 2020, 39(2): 32-39. | |
5 | 汪祖民,张志豪.基于卷积神经网络的机械故障诊断技术综述[J].计算机应用, 2022, 42(4): 1036-1043. |
WANG Z M, ZHANG Z H. Review of mechanical fault diagnosis technology based on convolutional neural network [J]. Journal of Computer Applications, 2022, 42(4): 1036-1043. | |
6 | 陈鑫,肖明清,文斌成.基于变分模态分解和混沌麻雀搜索算法优化支持向量机的滚动轴承故障诊断[J].计算机应用, 2021, 41(S2): 118-123. |
CHEN X, XIAO M Q, WEN B C. Rolling bearing fault diagnosis based on variational mode decomposition, chaotic sparrow search algorithm and support vector machine [J]. Journal of Computer Applications, 2021, 41(S2): 118-123. | |
7 | 李益兵,王磊,江丽.基于PSO改进深度置信网络的滚动轴承故障诊断[J].振动与冲击, 2020, 39(5): 89-96. |
LI Y B, WANG L, JIANG L. Rolling bearing fault diagnosis based on DBN algorithm improved with PSO [J]. Journal of Vibration and Shock, 2020, 39(5): 89-96. | |
8 | 张敏,蔡振宇,包珊珊.基于EEMD-Hilbert和FWA-SVM的滚动轴承故障诊断方法[J].西南交通大学学报, 2019, 54(3): 633-639. |
ZHANG M, CAI Z Y, BAO S S. Fault diagnosis of rolling bearing based on EEMD-Hilbert and FWA-SVM [J]. Journal of Southwest Jiaotong University, 2019, 54(3): 633-639. | |
9 | LEE D, JEONG J. Few-shot learning-based light-weight WDCNN model for bearing fault diagnosis in Siamese network [J]. Sensors, 2023, 23(14): No.6587. |
10 | 彭雪莹,江永全,杨燕.基于图卷积网络的迁移学习轴承服役故障诊断[J].计算机应用, 2021, 41(12): 3626-3631. |
YANG X Y, JIANG Y Q, YANG Y. Transfer learning based on graph convolutional network in bearing service fault diagnosis [J]. Journal of Computer Applications, 2021, 41(12): 3626-3631. | |
11 | 王照伟,刘传帅,赵文祥,等.多尺度多任务注意力卷积神经网络滚动轴承故障诊断方法[J].电机与控制学报, 2024, 28(7): 65-76. |
WANG Z W, LIU C S, ZHAO W X, et al. Rolling bearing fault diagnosis with multi-scale multi-task attention convolutional neural network [J]. Electric Machines and Control, 2024, 28(7): 65-76. | |
12 | ZHAO Z, LI T, WU J, et al. Deep learning algorithms for rotating machinery intelligent diagnosis: an open source benchmark study [J]. ISA Transactions, 2020, 107: 224-255. |
13 | WANG Z, LIU Q, CHEN H, et al. A deformable CNN-DLSTM based transfer learning method for fault diagnosis of rolling bearing under multiple working conditions [J]. International Journal of Production Research, 2021, 59(16): 4811-4825. |
14 | 丁天淇.复杂工况下的轴承故障智能诊断方法研究[D].西安:西安理工大学, 2023: 25-36. |
DING T Q. Research on intelligent bearing fault diagnosis methods under complex working conditions [D]. Xi’an: Xi’an University of Technology, 2023: 25-36. | |
15 | LESSMEIER C, KIMOTHO, J K, ZIMMER D, et al. Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: a benchmark data set for data-driven classification [J]. PHM Society European Conference, 2016, 3(1): No.1577. |
16 | 许迪.基于微弱信号处理的滚动轴承复合故障诊断方法研究[D].哈尔滨:哈尔滨理工大学, 2023: 16-17. |
XU D. Research on compound fault diagnosis method of rolling bearing based on weak signal processing [D]. Harbin: Harbin University of Science and Technology, 2023: 16-17. | |
17 | HEUER F, MANTOWSKY S, BUKHARI S S, et al. Multitask-CenterNet (MCN): efficient and diverse multitask learning using an anchor free approach [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 997-1005. |
18 | LIU X, HE P, CHEN W, et al. Multi-task deep neural networks for natural language understanding [C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019:4487-4496. |
19 | RUDER S. An overview of multi-task learning in deep neural networks [EB/OL]. [2023-12-03]. . |
20 | MA J Q, ZHAO Z, YI X, et al. Modeling task relationships in multi-task learning with multi-gate mixture-of-experts [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1930-1939. |
21 | TANG H, LIU J, ZHAO M, et al. Progressive Layered Extraction (PLE): a novel Multi-Task Learning (MTL) model for personalized recommendations [C]// Proceedings of the 14th ACM Conference on Recommender Systems. New York: ACM, 2020: 269-278. |
22 | CIPOLLA R, GAL Y, KENDALL A. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7482-7491. |
23 | CHEN Z, BADRINARAYANAN V, LEE C Y, et al. GradNorm: gradient normalization for adaptive loss balancing in deep multitask networks [C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR.org, 2018: 794-803. |
24 | LIU S, JOHNS E, DAVISON A J. End-To-end multi-task learning with attention [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1871-1880. |
25 | LeCUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
26 | WU S, ZHONG S, LIU Y. Deep residual learning for image steganalysis [J]. Multimedia Tools and Applications, 2018, 77(9): 10437-10453. |
[1] | 郑宗生, 杜嘉, 成雨荷, 赵泽骋, 张月维, 王绪龙. 用于红外-可见光图像分类的跨模态双流交替交互网络[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 275-283. |
[2] | 梁杰涛, 罗兵, 付兰慧, 常青玲, 李楠楠, 易宁波, 冯其, 何鑫, 邓辅秦. 基于坐标几何采样的点云配准方法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 214-222. |
[3] | 晏燕, 钱星颖, 闫鹏斌, 杨杰. 位置大数据的联邦学习统计预测与差分隐私保护方法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 127-135. |
[4] | 张思齐, 张金俊, 王天一, 秦小林. 基于信号时态逻辑的深度时序事件检测算法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 90-97. |
[5] | 潘烨新, 杨哲. 基于多级特征双向融合的小目标检测优化模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2871-2877. |
[6] | 李云, 王富铕, 井佩光, 王粟, 肖澳. 基于不确定度感知的帧关联短视频事件检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2903-2910. |
[7] | 李顺勇, 李师毅, 胥瑞, 赵兴旺. 基于自注意力融合的不完整多视图聚类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2696-2703. |
[8] | 黄云川, 江永全, 黄骏涛, 杨燕. 基于元图同构网络的分子毒性预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2964-2969. |
[9] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[10] | 王熙源, 张战成, 徐少康, 张宝成, 罗晓清, 胡伏原. 面向手术导航3D/2D配准的无监督跨域迁移网络[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2911-2918. |
[11] | 张春雪, 仇丽青, 孙承爱, 荆彩霞. 基于两阶段动态兴趣识别的购买行为预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2365-2371. |
[12] | 刘禹含, 吉根林, 张红苹. 基于骨架图与混合注意力的视频行人异常检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2551-2557. |
[13] | 顾焰杰, 张英俊, 刘晓倩, 周围, 孙威. 基于时空多图融合的交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2618-2625. |
[14] | 石乾宏, 杨燕, 江永全, 欧阳小草, 范武波, 陈强, 姜涛, 李媛. 面向空气质量预测的多粒度突变拟合网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2643-2650. |
[15] | 陈虹, 齐兵, 金海波, 武聪, 张立昂. 融合1D-CNN与BiGRU的类不平衡流量异常检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2493-2499. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||