《计算机应用》唯一官方网站 ›› 2022, Vol. 42 ›› Issue (11): 3617-3624.DOI: 10.11772/j.issn.1001-9081.2021091683
所属专题: 人工智能
杜芸彦1,2, 李鸿1,2, 杨锦辉1,2, 江彧1,2, 毛耀1,2()
收稿日期:
2021-09-27
修回日期:
2022-05-25
接受日期:
2022-05-26
发布日期:
2022-11-14
出版日期:
2022-11-10
通讯作者:
毛耀
作者简介:
杜芸彦(1997—),女,四川成都人,硕士研究生,主要研究方向:目标检测、小样本学习基金资助:
Yunyan DU1,2, Hong LI1,2, Jinhui YANG1,2, Yu JIANG1,2, Yao MAO1,2()
Received:
2021-09-27
Revised:
2022-05-25
Accepted:
2022-05-26
Online:
2022-11-14
Published:
2022-11-10
Contact:
Yao MAO
About author:
DU Yunyan, born in 1997, M. S. candidate. Her research interests include target detection, few-shot learning.Supported by:
摘要:
现有的大部分目标检测算法都依赖于大规模的标注数据集来保证检测的正确率,但某些场景往往很难获得大量标注数据,且耗费大量人力、物力。针对这一问题,提出了基于负边距损失的小样本目标检测方法(NM?FSTD),将小样本学习(FSL)中属于度量学习的负边距损失方法引入目标检测,负边距损失可以避免将同一新类的样本错误地映射到多个峰值或簇,有助于小样本目标检测中新类的分类。首先采用大量训练样本和基于负边距损失的目标检测框架训练得到具有良好泛化性能的模型,之后通过少量具有标签的目标类别的样本对模型进行微调,并采用微调后的模型对目标类别的新样本进行目标检测。为了验证NM?FSTD的检测效果,使用MS COCO进行训练和评估。实验结果表明,所提方法AP50达到了22.8%,与Meta R?CNN和MPSR相比,准确率分别提高了3.7和4.9个百分点。NM?FSTD能有效提高在小样本情况下对目标类别的检测性能,解决目前目标检测领域中数据不足的问题。
中图分类号:
杜芸彦, 李鸿, 杨锦辉, 江彧, 毛耀. 基于负边距损失的小样本目标检测[J]. 计算机应用, 2022, 42(11): 3617-3624.
Yunyan DU, Hong LI, Jinhui YANG, Yu JIANG, Yao MAO. Few‑shot target detection based on negative‑margin loss[J]. Journal of Computer Applications, 2022, 42(11): 3617-3624.
1‑shot val | 5‑shot val | 1‑shot test | 5‑shot test | ||
---|---|---|---|---|---|
-0.15 | 70.63 | 57.02 | 77.26 | 56.33 | 76.20 |
-0.10 | 80.96 | 61.93 | 80.61 | 60.90 | 79.14 |
-0.05 | 86.93 | 64.86 | 81.97 | 61.89 | 80.43 |
-0.02 | 89.15 | 66.13 | 82.81 | 62.43 | 80.94 |
0 | 90.43 | 65.79 | 83.24 | 60.98 | 80.13 |
0.02 | 90.96 | 66.83 | 83.68 | 61.69 | 79.53 |
0.05 | 91.89 | 66.27 | 83.83 | 61.05 | 79.21 |
0.10 | 90.37 | 65.55 | 82.16 | 59.24 | 77.53 |
0.20 | 91.98 | 63.08 | 79.59 | 56.44 | 74.75 |
表1 miniImagenet数据集在不同m下采用余弦Softmax损失的分类准确率对比 ( %)
Tab. 1 Classification accuracy comparison of Cosine Softmax loss with different m on miniImagenet dataset
1‑shot val | 5‑shot val | 1‑shot test | 5‑shot test | ||
---|---|---|---|---|---|
-0.15 | 70.63 | 57.02 | 77.26 | 56.33 | 76.20 |
-0.10 | 80.96 | 61.93 | 80.61 | 60.90 | 79.14 |
-0.05 | 86.93 | 64.86 | 81.97 | 61.89 | 80.43 |
-0.02 | 89.15 | 66.13 | 82.81 | 62.43 | 80.94 |
0 | 90.43 | 65.79 | 83.24 | 60.98 | 80.13 |
0.02 | 90.96 | 66.83 | 83.68 | 61.69 | 79.53 |
0.05 | 91.89 | 66.27 | 83.83 | 61.05 | 79.21 |
0.10 | 90.37 | 65.55 | 82.16 | 59.24 | 77.53 |
0.20 | 91.98 | 63.08 | 79.59 | 56.44 | 74.75 |
1‑shot val | 5‑shot val | 1‑shot test | 5‑shot test | ||
---|---|---|---|---|---|
-0.8 | 81.79 | 59.45 | 78.02 | 57.76 | 77.14 |
-0.5 | 88.82 | 59.03 | 79.25 | 58.46 | 78.24 |
-0.3 | 92.68 | 59.14 | 79.40 | 59.02 | 78.80 |
0 | 93.22 | 58.83 | 79.34 | 56.87 | 77.97 |
0.3 | 92.61 | 59.27 | 80.26 | 57.41 | 78.40 |
0.5 | 88.78 | 58.90 | 78.61 | 57.54 | 77.44 |
0.8 | 93.94 | 58.50 | 79.41 | 56.36 | 77.87 |
表2 miniImagenet数据集在不同m下采用Softmax损失的分类准确率对比 ( %)
Tab. 2 Classification accuracy comparison of Softmax loss with different m on miniImagenet dataset
1‑shot val | 5‑shot val | 1‑shot test | 5‑shot test | ||
---|---|---|---|---|---|
-0.8 | 81.79 | 59.45 | 78.02 | 57.76 | 77.14 |
-0.5 | 88.82 | 59.03 | 79.25 | 58.46 | 78.24 |
-0.3 | 92.68 | 59.14 | 79.40 | 59.02 | 78.80 |
0 | 93.22 | 58.83 | 79.34 | 56.87 | 77.97 |
0.3 | 92.61 | 59.27 | 80.26 | 57.41 | 78.40 |
0.5 | 88.78 | 58.90 | 78.61 | 57.54 | 77.44 |
0.8 | 93.94 | 58.50 | 79.41 | 56.36 | 77.87 |
方法 | Backbone | AP/% | AP50/% | AP75/% | 参数量/106 | FLOPs/109 |
---|---|---|---|---|---|---|
LSTD | VGG‑16 | 3.2 | — | — | 138.36 | 15.5 |
FR | DarkNet‑19 | 5.6 | 12.3 | 4.6 | 20.83 | |
Meta R‑CNN | ResNet‑101 | 8.7 | 19.1 | 6.6 | 44.55 | 7.85 |
MPSR | 9.8 | 17.9 | 9.7 | |||
TFA | 10.0 | — | 9.3 | |||
SRR‑FSD | 11.3 | 23.0 | 9.8 | |||
FSCE | 11.9 | — | 10.5 | |||
FSOD | ResNet‑50 | 11.1 | 20.4 | 10.6 | 25.56 | 4.12 |
Cos‑FSOD | 10.3 | 20.2 | 9.2 | |||
Neg‑Mar Softmax FSTD(本文方法) | 10.9 | 21.4 | 10.1 | |||
Neg‑Mar Cos‑Softmax FSTD (本文方法) | 12.2 | 22.8 | 11.7 |
表3 各方法的性能对比
Tab.3 Performance comparison of different methods
方法 | Backbone | AP/% | AP50/% | AP75/% | 参数量/106 | FLOPs/109 |
---|---|---|---|---|---|---|
LSTD | VGG‑16 | 3.2 | — | — | 138.36 | 15.5 |
FR | DarkNet‑19 | 5.6 | 12.3 | 4.6 | 20.83 | |
Meta R‑CNN | ResNet‑101 | 8.7 | 19.1 | 6.6 | 44.55 | 7.85 |
MPSR | 9.8 | 17.9 | 9.7 | |||
TFA | 10.0 | — | 9.3 | |||
SRR‑FSD | 11.3 | 23.0 | 9.8 | |||
FSCE | 11.9 | — | 10.5 | |||
FSOD | ResNet‑50 | 11.1 | 20.4 | 10.6 | 25.56 | 4.12 |
Cos‑FSOD | 10.3 | 20.2 | 9.2 | |||
Neg‑Mar Softmax FSTD(本文方法) | 10.9 | 21.4 | 10.1 | |||
Neg‑Mar Cos‑Softmax FSTD (本文方法) | 12.2 | 22.8 | 11.7 |
算法 | 负边距损失 | AP | AP50 | AP75 | APS | APM | APL |
---|---|---|---|---|---|---|---|
FSOD(Ours Impl) | 10.7 | 20.1 | 10.0 | 2.2 | 11.6 | 17.8 | |
Neg‑Mar Softmax FSTD(Ours) | √ | 10.9 | 21.4 | 10.1 | 3.5 | 12.4 | 19.2 |
Cos‑FSOD(Ours Impl) | 10.3 | 20.2 | 9.2 | 2.2 | 11.5 | 17.7 | |
Neg‑Mar Cos‑Softmax FSTD (Ours) | √ | 12.2 | 22.8 | 11.7 | 3.6 | 12.4 | 20.9 |
表4 负边距损失对小样本目标检测准确率的影响 ( %)
Tab. 4 Influence of negative margin loss on accuracy in few?shot target detection
算法 | 负边距损失 | AP | AP50 | AP75 | APS | APM | APL |
---|---|---|---|---|---|---|---|
FSOD(Ours Impl) | 10.7 | 20.1 | 10.0 | 2.2 | 11.6 | 17.8 | |
Neg‑Mar Softmax FSTD(Ours) | √ | 10.9 | 21.4 | 10.1 | 3.5 | 12.4 | 19.2 |
Cos‑FSOD(Ours Impl) | 10.3 | 20.2 | 9.2 | 2.2 | 11.5 | 17.7 | |
Neg‑Mar Cos‑Softmax FSTD (Ours) | √ | 12.2 | 22.8 | 11.7 | 3.6 | 12.4 | 20.9 |
Backbone | AP | AP50 | AP75 |
---|---|---|---|
ResNet‑34 | 9.4 | 19.5 | 8.7 |
ResNet‑50 | 12.2 | 22.8 | 11.7 |
ResNet‑101 | 14.0 | 24.3 | 13.4 |
表5 骨干网络的消融实验结果 ( %)
Tab. 5 Ablation experimental results of backbone networks unit: %
Backbone | AP | AP50 | AP75 |
---|---|---|---|
ResNet‑34 | 9.4 | 19.5 | 8.7 |
ResNet‑50 | 12.2 | 22.8 | 11.7 |
ResNet‑101 | 14.0 | 24.3 | 13.4 |
1 | LIU W, ANGUELOY D, ERHAN D, et al. SSD: Single Shot MultiBox Detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNIP 9905. Cham: Springer, 2016: 21-37. |
2 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real‑time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. 10.1109/cvpr.2016.91 |
3 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525. 10.1109/cvpr.2017.690 |
4 | REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. [2021-08-10]. . |
5 | BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection [EB/OL]. [2021-07-05]. . |
6 | 刘丹, 吴亚娟, 罗南超, 等. 嵌入注意力和特征交织模块的Gaussian‑YOLO v3目标检测[J]. 计算机应用, 2020, 40(8): 2225-2230. |
LIU D, WU Y J, LUO N C, et al. Object detection of Gaussian‑YOLO v3 implanting attention and feature intertwine modules[J]. Journal of Computer Applications, 2020, 40(8): 2225-2230. | |
7 | HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(9):1904-1916. 10.1109/tpami.2015.2389824 |
8 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. 10.1109/cvpr.2014.81 |
9 | GIRSHICK R. Fast RCNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448. 10.1109/iccv.2015.169 |
10 | REN S, HE K, GIRSHICK R, et al. Faster R‑CNN: towards real‑ time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. 10.1109/tpami.2016.2577031 |
11 | WANG Y, YAO Q, KWOK J T, et al. Generalizing from a few examples: a survey on few‑shot learning[J]. ACM Computing Surveys, 2020, 53(3):1-34. 10.1145/3386252 |
12 | MILLER E G, MATSAKIS N E, VIOLA P A. Learning from one example through shared densities on transforms[C]// Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2000: 464-471. 10.1109/cvpr.2000.855790 |
13 | SCHWARTZ E, KARLINSKY L, SHTOK J, et al. Delta‑ encoder: an effective sample synthesis method for few‑shot object recognition[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 2850-2860. |
14 | 甘岚, 沈鸿飞, 王瑶, 等. 基于改进DCGAN的数据增强方法[J]. 计算机应用, 2021, 41(5): 1305-1313. |
GAN L, SHEN H F, WANG Y, et al. Data augmentation method based on improved deep convolutional generative adversarial networks[J]. Journal of Computer Applications, 2021, 41(5): 1305-1313. | |
15 | 陈佛计, 朱枫, 吴清潇, 等. 基于生成对抗网络的红外图像数据增强[J]. 计算机应用, 2020, 40(7): 2084-2088. |
CHEN F J, ZHU F, WU Q X, et al. Infrared image data augmentation based on generative adversarial network[J]. Journal of Computer Applications, 2020, 40(7): 2084-2088. | |
16 | HARIHARAN B, GIRSHICK R. Low‑shot visual recognition by shrinking and hallucinating features[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 3037-3046. 10.1109/iccv.2017.328 |
17 | PFISTER T, CHARLES J, ZISSERMAN A. Domain‑adaptive discriminative one‑shot learning of gestures[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8694. Cham: Springer, 2014: 814-829. |
18 | DOUZE M, SZLAM A, HARIHARAN B, et al. Low‑shot learning with large‑scale diffusion[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2018: 3349-3358. 10.1109/cvpr.2018.00353 |
19 | GRANT E, FINN C, LEVINE S, et al. Recasting gradient‑based meta‑learning as hierarchical Bayes [EB/OL]. [2021-08-10]. . |
20 | TSAI Y, SALAKHUTDINOV R. Improving one‑shot learning through fusing side information [EB/OL]. [2021-06-19]. . |
21 | GAO H, SHOU Z, ZAREIAN A, et al. Low‑shot learning via covariance‑preserving adversarial augmentation networks[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 983-993. |
22 | VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016: 3637-3645. |
23 | SNELL J, SWERSKY K, ZEMEL R S. Prototypical networks for few‑shot learning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 4077-4087. |
24 | SUNG F, YANG Y, ZHANG L, et al. Learning to compare: relation network for few‑shot learning[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1199-1208. 10.1109/cvpr.2018.00131 |
25 | KOCH G R, ZEMEL R, SALAKHUTDINOV R. Siamese neural networks for one‑shot image recognition[C/OL]// Proceedings of the 2015 32nd International Conference on Machine Learning. Brookline, MA: JMLR.org, 2015 [2021-06-05]. . |
26 | MUNKHDALAI T, YU H. Meta networks[C]// Proceedings of the 34th International Conference on Machine Learning. Brookline, MA: JMLR.org, 2017: 2554-2563. |
27 | LAKE B M, SALAKHUTDINOV R, TENENBAUM J B. Human‑ level concept learning through probabilistic program induction[J]. Science, 2015, 350(6266): 1332-1338. 10.1126/science.aab3050 |
28 | KINGMA D P, WELLING M. Auto‑encoding variational Bayes [EB/OL]. [2021-07-10]. . |
29 | HOFFMAN J, TZENG E, DONAHUE J, et al. One‑shot adaptation of supervised deep convolutional models [EB/OL]. [2021-06-15]. . |
30 | LEE Y, CHOI S. Gradient‑based meta‑learning with learned layerwise metric and subspace [EB/OL]. [2021-05-10]. . |
31 | 潘兴甲,张旭龙,董未名,等.小样本目标检测的研究现状[J].南京信息工程大学学报(自然科学版),2019,11(6):698-705. |
PAN X J, ZHANG X L, DONG W M, et al. A survey of few‑shot object detection[J]. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 2019,11(6):698-705 | |
32 | CHEN H, WANG Y, WANG G, et al. LSTD: a low‑shot transfer detector for object detection [EB/OL]. [2021-04-25]. . |
33 | SINGH P, VARADARAJAN S, SINGH A N, et al. Multidomain document layout understanding using few shot object detection [EB/OL]. [2021-05-10]. . |
34 | ZHANG T, ZHANG Y, SUN X, et al. Comparison network for one‑shot conditional object detection [EB/OL]. [2021-08-10]. . |
35 | KARLINSKY L, SHTOK J, HARARY S, et al. RepMet: representative‑based metric learning for classification and few‑shot object detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC: IEEE Computer Society, 2019: 5192-5201. 10.1109/cvpr.2019.00534 |
36 | SUN B, LI B, CAI S, et al. FSCE: Few‑shot object detection via contrastive proposal encoding[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2021: 7352-7362. 10.1109/cvpr46437.2021.00727 |
37 | FU K, ZHANG T, ZHANG Y, et al. Meta‑SSD: towards fast adaptation for few‑shot object detection with meta‑learning[J]. IEEE Access, 2019, 7: 77597-77606. 10.1109/access.2019.2922438 |
38 | FAN Q, ZHUO W, TANG C K, et al. Few‑shot object detection with attention‑RPN and multi‑relation detector[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2020:4012-4021. 10.1109/cvpr42600.2020.00407 |
39 | WEN Y, ZHANG K, LI Z, et al. A discriminative feature learning approach for deep face recognition[C]// Proceedings of the 2016 European Conference on Computer Vision, LNIP 9911. Cham: Springer, 2016: 499-512. |
40 | LIU W, WEN Y, YU Z, et al. Large‑margin Softmax loss for convolutional neural networks [EB/OL]. [2021-07-01]. . |
41 | DENG J, GUO J, ZAFEIRIOU S. ArcFace: additive angular margin loss for deep face recognition [EB/OL]. [2021-05-17]. . |
42 | WANG H, WANG Y, ZHOU Z, et al. CosFace: large margin cosine loss for deep face recognition[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2018: 5265-5274. 10.1109/cvpr.2018.00552 |
43 | LIU B, CAO Y, LIN Y, et al. Negative margin matters: understanding margin in few‑shot classification [C]// Proceedings of the 2020 European Conference on Computer Vision, LNIP 12361. Cham: Springer, 2020: 438-455. |
44 | LIU W, WEN Y, YU Z, et al. SphereFace: deep hypersphere embedding for face recognition[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2017: 6738-6746. 10.1109/cvpr.2017.713 |
45 | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// Proceedings of the 2014 European Conference on Computer Vision, LNIP 8693. Cham: Springer, 2014: 740-755. |
46 | KANG B, ZHUANG L, XIN W, et al. Few‑shot object detection via feature reweighting[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8420-8429. 10.1109/iccv.2019.00851 |
47 | YAN X, CHEN Z, XU A, et al. Meta R‑CNN: towards general solver for instance‑level low‑shot learning[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9576-9585. 10.1109/iccv.2019.00967 |
48 | ZHU C, CHEN F, AHMED U, et al. Semantic relation reasoning for shot‑stable few‑shot object detection [EB/OL]. [2021-08-05]. . |
49 | WANG X, HUANG T E, DARRELL T, et al. Frustratingly simple few-shot object detection [EB/OL]. [2021-08-10]. . |
50 | WU J, LIU S, HUANG D, et al. Multi‑scale positive sample refinement for few‑shot object detection [C]// Proceedings of the 2020 European Conference on Computer Vision, LNIP 12361. Cham: Springer, 2020: 456-472. |
[1] | 潘烨新, 杨哲. 基于多级特征双向融合的小目标检测优化模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2871-2877. |
[2] | 张英俊, 李牛牛, 谢斌红, 张睿, 陆望东. 课程学习指导下的半监督目标检测框架[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2326-2333. |
[3] | 李烨恒, 罗光圣, 苏前敏. 基于改进YOLOv5的Logo检测算法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2580-2587. |
[4] | 徐松, 张文博, 王一帆. 基于时空信息的轻量视频显著性目标检测网络[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2192-2199. |
[5] | 孙逊, 冯睿锋, 陈彦如. 基于深度与实例分割融合的单目3D目标检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2208-2215. |
[6] | 姬张建, 杜娜. 基于改进VariFocalNet的微小目标检测[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2200-2207. |
[7] | 余新言, 曾诚, 王乾, 何鹏, 丁晓玉. 基于知识增强和提示学习的小样本新闻主题分类方法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1767-1774. |
[8] | 刘越, 刘芳, 武奥运, 柴秋月, 王天笑. 基于自注意力机制与图卷积的3D目标检测网络[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1972-1977. |
[9] | 邓亚平, 李迎江. YOLO算法及其在自动驾驶场景中目标检测综述[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1949-1958. |
[10] | 耿焕同, 刘振宇, 蒋骏, 范子辰, 李嘉兴. 基于改进YOLOv8的嵌入式道路裂缝检测算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1613-1618. |
[11] | 李鸿天, 史鑫昊, 潘卫国, 徐成, 徐冰心, 袁家政. 融合多尺度和注意力机制的小样本目标检测[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1437-1444. |
[12] | 宋霄罡, 张冬冬, 张鹏飞, 梁莉, 黑新宏. 面向复杂施工环境的实时目标检测算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1605-1612. |
[13] | 陈天华, 朱家煊, 印杰. 基于注意力机制的鸟类识别算法[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1114-1120. |
[14] | 蔡美玉, 朱润哲, 吴飞, 张开昱, 李家乐. 基于注意力机制和多粒度特征融合的跨视角匹配模型[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 901-908. |
[15] | 蒋占军, 吴佰靖, 马龙, 廉敬. 多尺度特征和极化自注意力的Faster-RCNN水漂垃圾识别[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 938-944. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||