《计算机应用》唯一官方网站

• •    下一篇

融合三元组和文本属性的多视图实体对齐

翟社平,黄妍,杨晴,杨锐   

  1. 西安邮电大学
  • 收稿日期:2024-05-30 修回日期:2024-07-30 接受日期:2024-08-28 发布日期:2024-09-09 出版日期:2024-09-09
  • 通讯作者: 黄妍
  • 基金资助:
    工业和信息化部通信软科学项目;工业和信息化部通信软科学项目;国家自然科学基金项目;陕西省重点研发计划项目;陕西省教育厅科学研究计划项目;陕西省大学生创新创业训练计划项目;陕西省大学生创新创业训练计划项目

Multi-view Entity Alignment combining triples and text at-tributes

  • Received:2024-05-30 Revised:2024-07-30 Accepted:2024-08-28 Online:2024-09-09 Published:2024-09-09

摘要: 实体对齐是识别不同来源的知识图谱中指代相同的实体。现有的实体对齐模型大多关注于实体自身的特征,部分模型引入了实体的关系以及属性信息辅助实现对齐,但这些方法忽视了实体中潜在的邻域信息和语义信息。为了解决以上问题,提出了一种融合三元组和文本属性的多视图实体对齐模型,该模型将实体信息分为多个视图实现对齐,针对缺少邻域信息的问题,采用图卷积神经网络与翻译模型并行学习嵌入实体的关系信息,针对缺少语义信息的问题,采用词嵌入与预训练语言模型学习属性文本的语义信息。实验结果表明,在多个基准数据集上,所提出的方法始终优于其他实体对齐方法,并有望提高对齐精度和辨别能力。

关键词: 实体对齐, 知识嵌入, 注意力机制, 依存句法分析, Bert

Abstract: Entity Alignment is to identify the same entity in the Knowledge Graph of different sources. Most of the existing Entity Alignment models focus on the characteristics of the entity itself. Some models introduce entity relationships and attribute information to assist in alignment. However, these methods ignore the potential neighborhood infor-mation and semantic information in the entity. In order to solve the above problems, a multi-view entity alignment model combining triples and text attributes is proposed. This model divides entity information into multiple views to achieve alignment. For the lack of neighborhood information, Graph Convolutional Neural network and translation model are used to learn the relationship information of embedded entities in parallel, aiming at the lack of semantic information. Word embedding and pre-trained language model are used to learn the semantic information of attribute text. The experimental results show that the proposed method is always superior to other Entity Alignment methods on multiple benchmark datasets, and is expected to improve the alignment accuracy and discrimination ability.

Key words: entity alignment, knowledge embedding, attention mechanism, dependency syntactic parsing, Bert

中图分类号: