| 1 | ROGLIC G. WHO global report on diabetes: a summary [J]. International Journal of Noncommunicable Diseases, 2016, 1(1): 3-8. | 
																													
																						| 2 | TINAJERO M G, MALIK V S. An update on the epidemiology of type 2 diabetes: a global perspective [J]. Endocrinology and Metabolism Clinics, 2021, 50(3): 337-355. | 
																													
																						| 3 | PAPATHEODOROU K, BANACH M, BEKIARI E, et al. Complications of diabetes 2017 [J]. Journal of Diabetes Research, 2018, 2018: No.3086167. | 
																													
																						| 4 | TOMIC D, SHAW J E, MAGLIANO D J. The burden and risks of emerging complications of diabetes mellitus [J]. Nature Reviews Endocrinology, 2022, 18(9): 525-539. | 
																													
																						| 5 | GROSS J L, DE AZEVEDO M J, SILVEIRO S P, et al. Diabetic nephropathy: diagnosis, prevention, and treatment [J]. Diabetes Care, 2005, 28(1): 164-176. | 
																													
																						| 6 | KIKKAWA R, KOYA D, HANEDA M. Progression of diabetic nephropathy [J]. American Journal of Kidney Diseases, 2003, 41(3S): S19-S21. | 
																													
																						| 7 | SAGOO M K, GNUDI L. Diabetic nephropathy: an overview [M]// Diabetic nephropathy: methods and protocols, MIMB 2067. New York: Humana, 2020: 3-7. | 
																													
																						| 8 | VUJOSEVIC S, ALDINGTON S J, SILVA P, et al. Screening for diabetic retinopathy: new perspectives and challenges [J]. The Lancet Diabetes and Endocrinology, 2020, 8(4): 337-347. | 
																													
																						| 9 | JAWA A, KCOMT J, FONSECA V A. Diabetic nephropathy and retinopathy [J]. Medical Clinics, 2004, 88(4): 1001-1036. | 
																													
																						| 10 | ABRÀMOFF M D, GARVIN M K, SONKA M. Retinal imaging and image analysis [J]. IEEE Reviews in Biomedical Engineering, 2010, 3: 169-208. | 
																													
																						| 11 | ZHOU B, CUI Q, WEI X S, et al. BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9719-9728. | 
																													
																						| 12 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007. | 
																													
																						| 13 | XIE Y, WAN Q, XIE H, et al. Fundus image-label pairs synthesis and retinopathy screening via GANs with class-imbalanced semi-supervised learning [J]. IEEE Transactions on Medical Imaging, 2023, 42(9):2714-2725. | 
																													
																						| 14 | 聂永琦,曹慧,杨锋,等.深度学习在糖尿病视网膜病灶检测中的应用综述[J].计算机工程与应用,2021,57(20):25-41. | 
																													
																						|  | NIE Y Q, CAO H, YANG F, et al. Review of application of deep learning in detection of diabetic retinal lesions[J]. Computer Engineering and Applications, 2021, 57(20): 25-41. | 
																													
																						| 15 | POPLIN R, VARADARAJAN A V, BLUMER K, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning [J]. Nature Biomedical Engineering, 2018, 2(3): 158-164. | 
																													
																						| 16 | KANG E Y C, HSIEH Y T, LI C H, et al. Deep learning-based detection of early renal function impairment using retinal fundus images: model development and validation [J]. JMIR Medical Informatics, 2020, 8(11): No.e23472. | 
																													
																						| 17 | ZHAO L, REN H, ZHANG J, et al. Diabetic retinopathy, classified using the lesion-aware deep learning system, predicts diabetic end-stage renal disease in Chinese patients [J]. Endocrine Practice, 2020, 26(4): 429-443. | 
																													
																						| 18 | SABANAYAGAM C, XU D, TING D S W, et al. A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations [J]. The Lancet Digital Health, 2020, 2(6): e295-e302. | 
																													
																						| 19 | BETZLER B K, CHEE E Y L, HE F, et al. Deep learning algorithms to detect diabetic kidney disease from retinal photographs in multiethnic populations with diabetes [J]. Journal of the American Medical Informatics Association, 2023, 30(12): 1904-1914. | 
																													
																						| 20 | HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network [EB/OL]. [2024-02-15]. . | 
																													
																						| 21 | CHEN S, MA K, ZHENG Y. Med 3D: transfer learning for 3D medical image analysis [EB/OL]. [2023-12-19]. . | 
																													
																						| 22 | CHATTERJEE S, KHUNTI K, DAVIES M J. Type 2 diabetes [J]. The Lancet, 2017, 389(10085): 2239-2251. | 
																													
																						| 23 | YANG Z, TAN T E, SHAO Y, et al. Classification of diabetic retinopathy: past, present and future [J]. Frontiers in Endocrinology, 2022, 13: 1079217. | 
																													
																						| 24 | HANEDA M, UTSUNOMIYA K, KOYA D, et al. A new classification of diabetic nephropathy 2014: a report from joint committee on diabetic nephropathy[J]. Clinical and Experimental Nephrology, 2015, 19(1): 1-5. | 
																													
																						| 25 | KINGMA D P, BA J L. Adam: a method for stochastic optimization [EB/OL]. [2024-01-09]. . | 
																													
																						| 26 | CUI Y, JIA M, LIN T Y, et al. Class-balanced loss based on effective number of samples [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9260-9269. | 
																													
																						| 27 | CAO K, WEI C, GAIDON A, et al. Learning imbalanced datasets with label-distribution-aware margin loss [C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 1567-1578. | 
																													
																						| 28 | SADI A A, CHOWDHURY L, JAHAN N, et al. LMFLOSS: a hybrid loss for imbalanced medical image classification [EB/OL]. [2024-03-01]. . | 
																													
																						| 29 | LIU Y, ZHANG F, GAO X, et al. Lesion-aware attention network for diabetic nephropathy diagnosis with optical coherence tomography images[J]. Frontiers in Medicine, 2023, 10: No.1259478. | 
																													
																						| 30 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision [C]// Proceedings of the 2016 IEEE conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826. | 
																													
																						| 31 | TAN M, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[C]// Proceedings of the 36th International Conference on Machine Learning. New York: ACM, 2019: 6105-6114. |