1 |
ROGLIC G. WHO global report on diabetes: a summary [J]. International Journal of Noncommunicable Diseases, 2016, 1(1): 3-8.
|
2 |
TINAJERO M G, MALIK V S. An update on the epidemiology of type 2 diabetes: a global perspective [J]. Endocrinology and Metabolism Clinics, 2021, 50(3): 337-355.
|
3 |
PAPATHEODOROU K, BANACH M, BEKIARI E, et al. Complications of diabetes 2017 [J]. Journal of Diabetes Research, 2018, 2018: No.3086167.
|
4 |
TOMIC D, SHAW J E, MAGLIANO D J. The burden and risks of emerging complications of diabetes mellitus [J]. Nature Reviews Endocrinology, 2022, 18(9): 525-539.
|
5 |
GROSS J L, DE AZEVEDO M J, SILVEIRO S P, et al. Diabetic nephropathy: diagnosis, prevention, and treatment [J]. Diabetes Care, 2005, 28(1): 164-176.
|
6 |
KIKKAWA R, KOYA D, HANEDA M. Progression of diabetic nephropathy [J]. American Journal of Kidney Diseases, 2003, 41(3S): S19-S21.
|
7 |
SAGOO M K, GNUDI L. Diabetic nephropathy: an overview [M]// Diabetic nephropathy: methods and protocols, MIMB 2067. New York: Humana, 2020: 3-7.
|
8 |
VUJOSEVIC S, ALDINGTON S J, SILVA P, et al. Screening for diabetic retinopathy: new perspectives and challenges [J]. The Lancet Diabetes and Endocrinology, 2020, 8(4): 337-347.
|
9 |
JAWA A, KCOMT J, FONSECA V A. Diabetic nephropathy and retinopathy [J]. Medical Clinics, 2004, 88(4): 1001-1036.
|
10 |
ABRÀMOFF M D, GARVIN M K, SONKA M. Retinal imaging and image analysis [J]. IEEE Reviews in Biomedical Engineering, 2010, 3: 169-208.
|
11 |
ZHOU B, CUI Q, WEI X S, et al. BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9719-9728.
|
12 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
|
13 |
XIE Y, WAN Q, XIE H, et al. Fundus image-label pairs synthesis and retinopathy screening via GANs with class-imbalanced semi-supervised learning [J]. IEEE Transactions on Medical Imaging, 2023, 42(9):2714-2725.
|
14 |
聂永琦,曹慧,杨锋,等.深度学习在糖尿病视网膜病灶检测中的应用综述[J].计算机工程与应用,2021,57(20):25-41.
|
|
NIE Y Q, CAO H, YANG F, et al. Review of application of deep learning in detection of diabetic retinal lesions[J]. Computer Engineering and Applications, 2021, 57(20): 25-41.
|
15 |
POPLIN R, VARADARAJAN A V, BLUMER K, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning [J]. Nature Biomedical Engineering, 2018, 2(3): 158-164.
|
16 |
KANG E Y C, HSIEH Y T, LI C H, et al. Deep learning-based detection of early renal function impairment using retinal fundus images: model development and validation [J]. JMIR Medical Informatics, 2020, 8(11): No.e23472.
|
17 |
ZHAO L, REN H, ZHANG J, et al. Diabetic retinopathy, classified using the lesion-aware deep learning system, predicts diabetic end-stage renal disease in Chinese patients [J]. Endocrine Practice, 2020, 26(4): 429-443.
|
18 |
SABANAYAGAM C, XU D, TING D S W, et al. A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations [J]. The Lancet Digital Health, 2020, 2(6): e295-e302.
|
19 |
BETZLER B K, CHEE E Y L, HE F, et al. Deep learning algorithms to detect diabetic kidney disease from retinal photographs in multiethnic populations with diabetes [J]. Journal of the American Medical Informatics Association, 2023, 30(12): 1904-1914.
|
20 |
HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network [EB/OL]. [2024-02-15]. .
|
21 |
CHEN S, MA K, ZHENG Y. Med 3D: transfer learning for 3D medical image analysis [EB/OL]. [2023-12-19]. .
|
22 |
CHATTERJEE S, KHUNTI K, DAVIES M J. Type 2 diabetes [J]. The Lancet, 2017, 389(10085): 2239-2251.
|
23 |
YANG Z, TAN T E, SHAO Y, et al. Classification of diabetic retinopathy: past, present and future [J]. Frontiers in Endocrinology, 2022, 13: 1079217.
|
24 |
HANEDA M, UTSUNOMIYA K, KOYA D, et al. A new classification of diabetic nephropathy 2014: a report from joint committee on diabetic nephropathy[J]. Clinical and Experimental Nephrology, 2015, 19(1): 1-5.
|
25 |
KINGMA D P, BA J L. Adam: a method for stochastic optimization [EB/OL]. [2024-01-09]. .
|
26 |
CUI Y, JIA M, LIN T Y, et al. Class-balanced loss based on effective number of samples [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9260-9269.
|
27 |
CAO K, WEI C, GAIDON A, et al. Learning imbalanced datasets with label-distribution-aware margin loss [C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 1567-1578.
|
28 |
SADI A A, CHOWDHURY L, JAHAN N, et al. LMFLOSS: a hybrid loss for imbalanced medical image classification [EB/OL]. [2024-03-01]. .
|
29 |
LIU Y, ZHANG F, GAO X, et al. Lesion-aware attention network for diabetic nephropathy diagnosis with optical coherence tomography images[J]. Frontiers in Medicine, 2023, 10: No.1259478.
|
30 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision [C]// Proceedings of the 2016 IEEE conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826.
|
31 |
TAN M, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[C]// Proceedings of the 36th International Conference on Machine Learning. New York: ACM, 2019: 6105-6114.
|