| 1 | YIN X, CHEN Y, BOUFERGUENE A, et al. A deep learning-based framework for an automated defect detection system for sewer pipes [J]. Automation in Construction, 2020, 109: 102967. | 
																													
																						| 2 | 李翊君,张文涛.城市新型智慧排水系统总体设计探讨[J].城市道桥与防洪,2021(12):75-78. | 
																													
																						|  | LI Y J, ZHANG W T. Discussion on overall design of new urban smart drainage system [J]. Urban Roads Bridges and Flood Control, 2021(12): 75-78. | 
																													
																						| 3 | 李萌,郭效琛,赵冬泉,等.在线监测技术在排水诊断中的应用[J].给水排水,2021,47(10):124-129. | 
																													
																						|  | LI M, GUO X C, ZHAO D Q, et al. Application of on-line monitoring technology in water drainage diagnose [J]. Water and Wastewater Engineering, 2021, 47(10): 124-129. | 
																													
																						| 4 | CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection: a survey [J]. ACM Computing Surveys, 2009, 41(3): No. 15. | 
																													
																						| 5 | TOLEDANO M, COHEN I, BEN-SIMHON Y, et al. Real-time anomaly detection system for time series at scale[C]// Proceedings of the 2018 Workshop on Anomaly Detection in Finance. [S.l.]: PMLR, 2018: 56-65. | 
																													
																						| 6 | NI X, YANG D, ZHANG H, et al. Time-series transfer learning: an early stage imbalance fault detection method based on feature enhancement and improved support vector data description[J]. IEEE Transactions on Industrial Electronics, 2022, 70(8): 8488-8498. | 
																													
																						| 7 | MAO W, WANG G, KOU L, et al. Deep domain-adversarial anomaly detection with one-class transfer learning[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(2): 524-546. | 
																													
																						| 8 | MORADI M, HAMIDZADEH J, MONSEFI R. ABT-SVDD: a method for uncertainty handling in domain adaptation using belief function theory[J]. Applied Soft Computing, 2023, 147(C): 110787. | 
																													
																						| 9 | MALHOTRA P, RAMAKRISHNAN A, ANAND G, et al. LSTM-based encoder-decoder for multi-sensor anomaly detection[C/OL]// Proceedings of the 2016 International Conference on Machine Learning: Anomaly Detection Workshop. New York: ACM, 2016 [2024-01-22]. . | 
																													
																						| 10 | PARK D, HOSHI Y, KEMP C C. A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1544-1551. | 
																													
																						| 11 | AUDIBERT J, MICHIARDI P, GUYARD F, et al. USAD: unsupervised anomaly detection on multivariate time series[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 3395-3404. | 
																													
																						| 12 | KIEU T, YANG B, JENSEN C S. Outlier detection for multidimensional time series using deep neural networks[C]// Proceedings of the 2018 19th IEEE International Conference on Mobile Data Management. Piscataway: IEEE, 2018: 125-134. | 
																													
																						| 13 | 唐伦,赵禹辰,薛呈呈,等.一种基于时间序列分解和时空信息提取的云服务器异常检测模型[J].电子与信息学报,2024,46(6):2638-2646. | 
																													
																						|  | TANG L, ZHAO Y C, XUE C C, et al. A cloud server anomaly detection model based on time series decomposition and spatiotemporal information extraction [J]. Journal of Electronics & Information Technology, 2024, 46(6): 2638-2646. | 
																													
																						| 14 | WANG W, LIANG C, TANG L, et al. Federated multi-discriminator BiWGAN-GP based collaborative anomaly detection for virtualized network slicing[J]. IEEE Transactions on Mobile Computing, 2023, 22(11): 6445-6459. | 
																													
																						| 15 | 姜昊,郭文明.提取时空特征的无监督时间序列异常检测[J].计算机科学与应用,2022,12(3):610-621. | 
																													
																						|  | JIANG H, GUO W M. Time series anomaly detection model based on deep mining of spatio-temporal features[J]. Computer Science and Application, 2022, 12(3): 610-621. | 
																													
																						| 16 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2023-12-06]. . | 
																													
																						| 17 | RUFF L, VANDERMEULEN R, GOERNITZ N, et al. Deep one-class classification [C]// Proceedings of the 35th International Conference on Machine Learning, PMLR 80. New York: ACM, 2018: 4393-4402. | 
																													
																						| 18 | TAX D M J, DUIN R P W. Support vector data description[J]. Machine Learning, 2004, 54: 45-66. | 
																													
																						| 19 | WU D, MA X, OLSON D L. Financial distress prediction using integrated Z-score and multilayer perceptron neural networks[J]. Decision Support Systems, 2022, 159(4): 113814. | 
																													
																						| 20 | KHARAL A Y, KHALID H A, GASTLI A, et al. A novel features-based multivariate Gaussian distribution method for the fraudulent consumers detection in the power utilities of developing countries [J]. IEEE Access, 2021, 9: 81057-81067. | 
																													
																						| 21 | ZHANG C, PENG K, DONG J. An incipient fault detection and self-learning identification method based on robust SVDD and RBM-PNN [J]. Journal of Process Control, 2020, 85: 173-183. | 
																													
																						| 22 | LIU F T, TING K M, ZHOU Z-H. Isolation-based anomaly detection[J]. ACM Transactions on Knowledge Discovery from Data, 2012, 6(1): No. 3. | 
																													
																						| 23 | SCHÖLKOPF B, PLATT J C, SHAWE-TAYLOR J, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2001, 13(7): 1443-1471. | 
																													
																						| 24 | WEI Y, JANG-JACCARD J, SABRINA F, et al. AE-MLP: a hybrid deep learning approach for DDoS detection and classification [J]. IEEE Access, 2021, 9: 146810-146821. | 
																													
																						| 25 | CHEN H, LIU H, CHU X, et al. Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network[J]. Renewable Energy, 2021, 172: 829-840. |