| [1] |
DING Y, YU J, LIU B, et al. MuKEA: multimodal knowledge extraction and accumulation for knowledge-based visual question answering[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5079-5088.
|
| [2] |
LI A, HAN C, XING X, et al. KGSCS — a smart care system for elderly with geriatric chronic diseases: a knowledge graph approach[J]. BMC Medical Informatics and Decision Making, 2024, 24: No.73.
|
| [3] |
ZHAO X, FAN W, LIU H, et al. Multi-type urban crime prediction[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 4388-4396.
|
| [4] |
BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems — Volume 2. Red Hook: Curran Associates Inc., 2013: 2787-2795.
|
| [5] |
王春雷,王肖,刘凯.多模态知识图谱表示学习综述[J].计算机应用, 2024, 44(1): 1-15.
|
|
WANG C L, WANG X, LIU K. Multimodal knowledge graph representation learning: a review[J]. Journal of Computer Applications, 2024, 44(1): 1-15.
|
| [6] |
LE-KHAC P H, HEALY G, SMEATON A F. Contrastive representation learning: a framework and review[J]. IEEE Access, 2020, 8: 193907-193934.
|
| [7] |
WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2014: 1112-1119.
|
| [8] |
SUN Z, DENG Z H, NIE J Y, et al. RotatE: knowledge graph embedding by relational rotation in complex space[EB/OL]. [2024-01-13]..
|
| [9] |
NAYYERI M, CIL G M, VAHDATI S, et al. Trans4E: link prediction on scholarly knowledge graphs[J]. Neurocomputing, 2021, 461: 530-542.
|
| [10] |
YANG B, YIH W T, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. [2024-03-16]..
|
| [11] |
BALAŽEVIĆ I, ALLEN C, HOSPEDALES T M. Tucker: tensor factorization for knowledge graph completion[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 5185-5194.
|
| [12] |
DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 1811-1818.
|
| [13] |
NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers). Stroudsburg: ACL, 2018: 327-333.
|
| [14] |
XIE R, LIU Z, JIA J, et al. Representation learning of knowledge graphs with entity descriptions[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 2659-2665.
|
| [15] |
XIE R, LIU Z, LUAN H, et al. Image-embodied knowledge representation learning[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. California: IJCAI.org, 2017: 3140-3146.
|
| [16] |
MOUSSELLY-SERGIEH H, BOTSCHEN T, GUREVYCH I, et al. A multimodal translation-based approach for knowledge graph representation learning[C]// Proceedings of the 7th Joint Conference on Lexical and Computational Semantics. Stroudsburg: ACL, 2018: 225-234.
|
| [17] |
WANG Z, LI L, LI Q, et al. Multimodal data enhanced representation learning for knowledge graphs[C]// Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-8.
|
| [18] |
LU X, WANG L, JIANG Z, et al. MMKRL: a robust embedding approach for multi-modal knowledge graph representation learning[J]. Applied Intelligence, 2022, 52(7): 7480-7497.
|
| [19] |
WANG E, YU Q, CHEN Y, et al. Multi-modal knowledge graphs representation learning via multi-headed self-attention[J]. Information Fusion, 2022, 88: 78-85.
|
| [20] |
ZHAI H, LV X, HOU Z, et al. MLSFF: multi-level structural features fusion for multi-modal knowledge graph completion[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 14096-14116.
|
| [21] |
ZHANG Y, FANG Q, QIAN S, et al. Multi-modal multi-relational feature aggregation network for medical knowledge representation learning[C]// Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 3956-3965.
|
| [22] |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2024-04-27]..
|
| [23] |
FANG Q, ZHANG X, HU J, et al. Contrastive multi-modal knowledge graph representation learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(9): 8983-8996.
|
| [24] |
LI X, ZHAO X, XU J, et al. IMF: interactive multimodal fusion model for link prediction[C]// Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 2572-2580.
|
| [25] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
|
| [26] |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186.
|
| [27] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010.
|
| [28] |
LIU Y, LI H, GARCIA-DURAN A, et al. MMKG: multi-modal knowledge graphs[C]// Proceedings of the 2019 European Semantic Web Conference, LNCS 11503. Cham: Springer, 2019: 459-474.
|