《计算机应用》唯一官方网站

• •    下一篇

基于记忆增强和跨度筛选的实体关系联合抽取模型

刘爽,罗桂君,孟佳娜   

  1. 大连民族大学
  • 收稿日期:2024-11-05 修回日期:2025-03-16 接受日期:2025-03-20 发布日期:2025-04-02 出版日期:2025-04-02
  • 通讯作者: 刘爽
  • 基金资助:
    2023年教育部人文社会科学研究与规划基金

Entity relation joint extraction model based on memory enhancement and span screening

  • Received:2024-11-05 Revised:2025-03-16 Accepted:2025-03-20 Online:2025-04-02 Published:2025-04-02
  • Supported by:
    2023 Humanities and Social Sciences Research and Planning Fund of the Ministry of Education

摘要: 实体和关系抽取(ERE)通常采用流水线的方式进行处理,但这种流水线方法仅依赖于前一个任务的输出,导致实体识别和关系抽取之间出现信息交互问题,且容易引发误差传播问题。针对以上问题,提出一种基于跨度筛选且具备双向依赖的记忆增强(MEERE)模型。该模型引入类似记忆的机制,使每个任务不仅能利用前一任务的输出,还能够反向影响前一任务,从而捕获实体和关系间的复杂交互。其次为进一步减轻误差传播,引入实体跨度筛选机制。该机制通过在联合模块中动态筛选和验证实体跨度,确保只有高质量的实体被用于关系抽取,从而提升模型的鲁棒性和准确性。最后利用表格解码方式很好地处理关系重叠问题。在3个广泛使用的基准数据集(ACE05、SciERC和CoNLL04)上进行的实验结果表明,MEERE模型在ERE任务上表现出了显著的优势,与现有方法相比,它在实体识别和关系抽取的准确性上均有提升,特别是在减少误差传播和提高整体模型稳定性方面表现突出。与Tab-Seq在CoNLL04数据集上比较,MEERE在实体和关系抽取上都有显著提升,实体F1提升了0.4个百分点,关系严格评估F1提升了2.7个百分点。相比PURE-F,MEERE实现了超过10倍的加速效果,并且关系抽取性能更佳。这些结果验证了所提出的记忆增强模型在探索实体和关系交互作用方面的有效性。

关键词: 实体关系抽取, 记忆增强, 跨度筛选, 预训练语言模型, 跨句子上下文

Abstract: Entity and relation extraction (ERE) is usually processed in a pipeline manner, but this pipeline method only relies on the output of the previous task, which leads to information interaction problems between entity recognition and relation extraction, and easily causes error propagation problems. A memory enhancement model based on span screening and bidirectional dependency (MEERE) is proposed to address the above issues. This model introduces a memory-like mechanism so that each task can not only utilize the output of the previous task but also reversely affect the previous task, thereby capturing the complex interaction between entities and relations. Secondly, an entity span screening mechanism is introduced to further alleviate error propagation. This mechanism ensures that only high-quality entities are used for relation extraction by dynamically screening and verifying entity spans in the joint module, thereby improving the robustness and accuracy of the model. Finally, the table decoding method is used to deal with the relationship overlap problem well. Experimental results on three widely used benchmark datasets (ACE05, SciERC, and CoNLL04) show that the MEERE model shows significant advantages in the ERE task. Compared with existing methods, it has improved the accuracy of both entity recognition and relation extraction, especially in reducing error propagation and improving overall model stability. Compared with Tab-Seq on the CoNLL04 dataset, MEERE has significant improvements in both entity and relation extraction, with an increase of 0.4 percentage points in entity F1 and 2.7 percentage points in strict evaluation F1. Compared with PURE-F, MEERE achieves more than 10 times and better relation extraction performance. These results verify the effectiveness of the proposed memory-enhanced model in exploring the interaction between entities and relations.

Key words: Entity relation extraction, Memory enhancement, Span screening, Pre-trained language models, Cross-sentence context

中图分类号: