《计算机应用》唯一官方网站

• •    下一篇

基于YOLOv8n改进的轻量级入侵物种检测算法

李洪波1,何启学2,3,鲍胜利2,3   

  1. 1. 中科院成都信息技术股份有限公司
    2. 中国科学院成都计算机应用研究所
    3. 中国科学院成都计算机应用研究所
  • 收稿日期:2025-01-15 修回日期:2025-03-28 发布日期:2025-04-27 出版日期:2025-04-27
  • 通讯作者: 李洪波
  • 基金资助:
    中央在川高校院所“聚源兴川”项目

Lightweight invasive species detection algorithm based on YOLOv8n improvement

  • Received:2025-01-15 Revised:2025-03-28 Online:2025-04-27 Published:2025-04-27

摘要: 入侵物种的传播对生态系统造成严重威胁,削弱生物多样性,并对自然资源、农业生产和经济活动产生广泛的负面影响。为解决入侵物种识别难、检测精度不足等问题,本文提出了一种基于改进YOLOv8n的入侵物种检测算法IS-YOLO(Invasive Species-YOLO)。首先,将YOLOv8n中骨干网络的C2f模块中的Bottleneck替换为改进的FADC模块,从而显著提升特征提取的辨别能力和网络的表征能力;其次,检测头采用共享卷积策略,替代解耦头策略,利用共享卷积和组归一化操作,实现轻量化且精确的改进;第三,采用新的损失函数PIoUv2,优化目标框的回归效果,提高检测性能和模型收敛速度。最后,在Species196-L公开数据集上的实验结果表明,改进后的模型在平均精度值(mAP@0.5)上达到59.7%,模型大小为5.1MB,每秒检测帧数(FPS)为289,与YOLOv8n算法相比,检测精度提升了0.6个百分点,模型大小减少了1.9MB,FPS提高了近一倍,该算法兼具高精度和高效率,为入侵物种的实时监测和治理提供了技术支持。

关键词: 目标检测, 入侵物种, YOLOv8n, 膨胀卷积, 轻量化, 损失函数

Abstract: The spread of invasive species poses a severe threat to ecosystems, weakening biodiversity and exerting widespread negative impacts on natural resources, agricultural production, and economic activities. To address the challenges of invasive species identification and insufficient detection accuracy, this paper proposes an improved YOLOv8n-based detection algorithm, IS-YOLO (Invasive Species-YOLO). First, the Bottleneck in the C2f module of the YOLOv8n backbone network is replaced with an improved FADC module, significantly enhancing feature extraction capability and the network's representation ability. Second, a shared convolution strategy is adopted in the detection head, replacing the decoupled head approach, using shared convolution and group normalization to achieve lightweight and precise improvements. Third, a new loss function, PIoUv2, is introduced to optimize bounding box regression, improving detection performance and model convergence speed. Finally, experimental results on the Species196-L public dataset demonstrate that the improved model achieves a mean average precision (mAP@0.5) of 59.7%, with a model size of 5.1 MB and a frame rate of 289 FPS. Compared to the YOLOv8n algorithm, the detection accuracy improved by 0.6 percentage points, the model size reduced by 1.9 MB, and FPS nearly doubled. The proposed algorithm combines high accuracy and efficiency, providing technical support for real-time monitoring and management of invasive species.

Key words: object detection, invasive species, YOLOv8n, dilated convolution, lightweight, loss function

中图分类号: